Math, asked by armghanhijaz12, 1 year ago

lim x approches to pai secx/1+tanx

Answers

Answered by Steph0303
2

Answer:

-1

Step-by-step explanation:

\lim_{x \to \pi} \dfrac{ Sec\:x}{1 + Tan\:x}\\\\\text{Converting Sec x and Tan x to Sin and Cos forms we get,}\\\\\implies \lim_{x \to \pi} \dfrac{\dfrac{1}{Cos\:x}}{1 + \dfrac{Sin\:x}{Cos\:x}}\\\\\\\text{Taking LCM in the denominator we get,}\\\\\implies \lim_{x \to \pi} \dfrac{ \dfrac{1}{Cos\:x}}{ \dfrac{ Cos\:x + Sin\:x}{Cos\:x}}

Denominator gets cancelled and we get,

lim_{x \to \pi} \dfrac{1}{ Sin\:x + Cos\:x}

Applying limits we get,

⇒ 1 / Sin π + Cos π

⇒ 1 / 0 + (-1)

⇒ 1 / -1 = -1

Hence the answer is -1.

Similar questions