Math, asked by goodvibesonly3229, 1 month ago

lim x->0 (1-cosax)/xsin2x

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

\red{\rm :\longmapsto\:\displaystyle\lim_{x \to 0}\rm  \frac{1 - cos \: ax}{x \: sin2x} \: }

If we substitute directly x = 0, we get

\rm \:  =  \: \dfrac{1 - cos0}{0 \times sin0}

\rm \:  =  \: \dfrac{1 - 1}{0}

\rm \:  =  \: \dfrac{0}{0}

which is indeterminant form.

So, Consider again

\red{\rm :\longmapsto\:\displaystyle\lim_{x \to 0}\rm  \frac{1 - cos \: ax}{x \: sin2x} \: }

We know,

\boxed{ \tt{ \: 1 - cos2x =  {2sin}^{2}x \: }}

So, using this identity, we get

\rm \:  =  \: \dfrac{ {2sin}^{2} \dfrac{ax}{2} }{x \times  \red{\dfrac{sin2x}{2x}} \times 2x}

We know,

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0}\rm  \frac{sinx}{x} = 1 \: }}

So, using this identity, we get

\rm \:  =  \: \displaystyle\lim_{x \to 0}\rm  \frac{sin \dfrac{ax}{2} \times sin \dfrac{ax}{2}  }{ {x}^{2} }

\rm \:  =  \: \displaystyle\lim_{x \to 0}\rm  \frac{sin \dfrac{ax}{2} \times sin \dfrac{ax}{2}  }{ x \times x}

\rm \:  =  \: \displaystyle\lim_{x \to 0}\rm  \frac{sin \dfrac{ax}{2} \times sin \dfrac{ax}{2}  }{ \dfrac{ax}{2}  \times \dfrac{ax}{2} }  \times \dfrac{a}{2}  \times \dfrac{a}{2}

\rm \:  =  \: \dfrac{ {a}^{2} }{4} \times \displaystyle\lim_{x \to 0}\rm  \frac{sin\dfrac{ax}{2} }{\dfrac{ax}{2} } \times \displaystyle\lim_{x \to 0}\rm  \frac{sin\dfrac{ax}{2} }{\dfrac{ax}{2} }

\rm \:  =  \: \dfrac{ {a}^{2} }{4} \times 1 \times 1

\rm \:  =  \: \dfrac{ {a}^{2} }{4}

Hence,

\red{\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle\lim_{x \to 0}\rm  \frac{1 - cos \: ax}{x \: sin2x} \: } =  \frac{ {a}^{2} }{4} \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to Know :-

\boxed{ \tt{ \: \displaystyle\lim_{x \:  \longmapsto \:  0}\rm \:   \frac{sinx}{x}  \: =  \: 1 \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \:  \longmapsto \:  0}\rm \:   \frac{tanx}{x}  \: =  \: 1 \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \:  \longmapsto \:  0}\rm \:   \frac{1 - cosx}{x}  \: =  \: 0 \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \:  \longmapsto \:  0}\rm \:   \frac{log(1 +x)}{x}  \: =  \: 1 \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \:  \longmapsto \:  0}\rm \:   \frac{ {e}^{x}  - 1}{x}  \: =  \: 1 \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \:  \longmapsto \:  0}\rm \:   \frac{ {a}^{x}  - 1}{x}  \: =  \: loga \: }}

Similar questions