Math, asked by Anonymous, 11 months ago

lim x ->0 [(1 + x² - cosx)/ x tanx]

Answers

Answered by Anonymous
5

Answer:

\large\boxed{\sf{\dfrac{3}{2}}}

Step-by-step explanation:

Given limit,

\displaystyle\lim_{x\to0}  \dfrac{1 +  {x}^{2}  -  \cos(x) }{x \tan(x) }

Solving further, we get,

 = \displaystyle\lim_{x\to0}  \dfrac{1 +  {x}^{2}  -  \cos(x) }{x \times  \dfrac{ \tan(x) }{x}  \times x}

But, we know that,

  • \displaystyle\lim_{x\to0}  \dfrac{ \tan(x) }{x}  = 1

Therefore, we will get,

 = \displaystyle\lim_{x\to0}  \dfrac{1 +  {x}^{2}  -  \cos(x) }{ {x}^{2} }

Now, applying L hospital rule, i.e, differentiatiating both numerator and denominator separately, we get,

 = \displaystyle\lim_{x\to0}  \dfrac{ \frac{d}{dx}(1 +  {x}^{2}  -  \cos x)  }{ \frac{d}{dx} {x}^{2}  }

But, we know that,

  •  \frac{d}{dx} 1 = 0
  •  \frac{d}{dx}  {x}^{2}  = 2x
  •  \frac{d}{dx}  \cos(x)  =  -  \sin(x)

Therefore, we will get,

 = \displaystyle\lim_{x\to0}  \ \dfrac{2x +  \sin(x) }{2x}  \\  \\  = \displaystyle\lim_{x\to0} (1 +  \frac{ \sin(x) }{2x} ) \\  \\  = 1 + \dfrac{1}{2}  \displaystyle\lim_{x\to0}  \dfrac{ \sin(x) }{x}

But, we know that,

  • \displaystyle\lim_{x\to0}  \frac{ \sin(x) }{x}  = 1

Therefore , we get,

 = 1 +  \dfrac{1}{2}  \times 1 \\  \\  = 1 +  \dfrac{1}{2}  \\  \\  =  \frac{3}{2}

Hence, required value of limit is 3/2.

Similar questions