Math, asked by nikhilchandra3pby5qu, 9 months ago

lim x=o [(tan5x +6x) / tan3x+4x)]​

Answers

Answered by Swarup1998
1

Limits

Formula:

\displaystyle\quad\mathrm{\lim_{x\to 0}\frac{tan(mx)}{mx}=1}

\displaystyle\quad\mathrm{\lim_{x\to 0}(k)=k,\:k=constant}

Solution:

\displaystyle\quad\mathrm{\lim_{x\to 0}\frac{tan(5x)+6x}{tan(3x)+4x}}

\displaystyle\mathrm{=\lim_{x\to 0}\frac{\frac{tan(5x)+6x}{x}}{\frac{tan(3x)+4x}{x}}\quad[\because x\to 0\Rightarrow x\neq 0]}

\displaystyle\mathrm{=\lim_{x\to 0}\frac{\frac{tan(5x)}{x}+6}{\frac{tan(3x)}{x}+4}}

\mathrm{=\frac{\displaystyle \mathrm{5\lim_{x\to 0}\frac{tan(5x)}{5x}+6}}{\displaystyle \mathrm{3\lim_{x\to 0}\frac{tan(3x)}{3x}+4}}}

\displaystyle\mathrm{=\frac{5+6}{3+4}\quad[\because\lim_{x\to 0}\frac{tan(mx)}{mx}=1]}

\displaystyle\mathrm{=\frac{11}{7}}

\displaystyle\Rightarrow \boxed{\mathrm{\lim_{x\to 0}\frac{tan(5x)+6x}{tan(3x)+4x}=\frac{11}{7}}}

Read more on Brainly.in

1. Limit question.

- https://brainly.in/question/12815776

2. Limit question ( 12th question ).

- https://brainly.in/question/9224652

Similar questions