Math, asked by Rohit8677, 1 year ago

lim x tends to 0 1-cos2x/3tan²x

Answers

Answered by originaldeepak
21

Answer:

2/3

Step-by-step explanation:

1 - cos 2X = 2 sin^2 X


(2sin^2 X)/( 3 tan^2 X) = (2 cos^2 X)/ 3

Lim X tends to 0 .

So cos^2 (0) = 1

Hence 2/3

Answered by hukam0685
11

Answer:

 \frac{2}{3}  \\

Step-by-step explanation:

lim_{x -> 0} \:  \:  \frac{1 - cos \: 2x}{3 {tan}^{2}x }  \\  \\  \because \: 1 -  cos2x = 2 {sin}^{2}x \\  \\ so \\  \\  lim_{x -> 0} \:  \:  \frac{ 2{sin}^{2}x }{3 {tan}^{2}x } \\  \\ we \: know \: that \\  \\ tan \: x =  \frac{sin \: x}{cos \: x}  \\  \\ so \\  \\ lim_{x -> 0} \:  \:  \frac{ 2{sin}^{2}x }{3 ( \frac{ {sin}^{2}x }{ {cos}^{2} x} ) } \\  \\ lim_{x -> 0} \:  \:    \frac{2}{3}  {cos}^{2}x \\ \\ as \: cos 0° = 1\\  \\ apply \: limit \\  \\ \\ lim_{x -> 0} \:  \:    \frac{2}{3}  {cos}^{2}x =  \frac{2}{3}  \\  \\

Hope it helps you

Similar questions