Math, asked by shethdharmik002, 1 day ago

lim x tends to 0 9^x-2(3^x)+1/x^2​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given expression is

\rm \: \displaystyle\lim_{x \to 0}\rm  \frac{ {9}^{x} - 2 \times  {3}^{x}  + 1}{ {x}^{2} }  \\

If we substitute directly x = 0, we get

\rm \:  =   \frac{ {9}^{0} - 2 \times  {3}^{0}  + 1}{ {0}^{2} }  \\

\rm \:  =  \: \dfrac{1 - 2 + 1}{0}  \\

\rm \:  =  \: \dfrac{2 - 2}{0}  \\

\rm \:  =  \: \dfrac{0}{0}  \\

which is indeterminant form.

Consider, again

\rm \: \displaystyle\lim_{x \to 0}\rm  \frac{ {9}^{x} - 2 \times  {3}^{x}  + 1}{ {x}^{2} }  \\

\rm \: =  \:  \displaystyle\lim_{x \to 0}\rm  \frac{ {( {3}^{2} )}^{x} - 2 \times  {3}^{x}  + 1}{ {x}^{2} }  \\

\rm \: =  \:  \displaystyle\lim_{x \to 0}\rm  \frac{ {3}^{2x} - 2 \times  {3}^{x}  + 1}{ {x}^{2} }  \\

\rm \: =  \:  \displaystyle\lim_{x \to 0}\rm  \frac{ {( {3}^{x}  - 1)}^{2} }{ {x}^{2} }  \\

\rm \:  =  \: \displaystyle\lim_{x \to 0}\rm  \frac{( {3}^{x} - 1)( {3}^{x} - 1) }{ {x}^{2} }  \\

\rm \:  =  \: \displaystyle\lim_{x \to 0}\rm  \frac{ {3}^{x} - 1}{x} \times \displaystyle\lim_{x \to 0}\rm  \frac{ {3}^{x} - 1}{x} \\

We know,

\boxed{ \rm{ \:\displaystyle\lim_{x \to 0}\rm  \frac{ {a}^{x}  - 1}{x} = loga \:  \: }} \\

So, using this result, we get

\rm \:  =  \: log3 \times log3 \\

\rm \:  =  \:  {(log3)}^{2}  \\

Hence,

\rm\implies \:\boxed{ \rm{ \: \displaystyle\lim_{x \to 0}\rm  \frac{ {9}^{x} - 2 \times  {3}^{x}  + 1}{ {x}^{2} }  =  {(log3)}^{2}   \: }}\\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{sinx}{x}  = 1}\\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{tanx}{x}  = 1}\\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{log(1 + x)}{x}  = 1}\\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{ {e}^{x}  - 1}{x}  = 1}\\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{ {a}^{x}  - 1}{x} = loga}\\ \\  \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions