Math, asked by vllm16lavi, 1 year ago

Lim x tends to 0 then (tanx-sinx)/x×x×x

Answers

Answered by luk3004
0

Answer:

Answer:

lim

x

0

 

tan

x

sin

x

x

3

=

1

2

Explanation:

Transform the function in this way:

tan

x

sin

x

x

3

=

1

x

3

(

sin

x

cos

x

sin

x

)

tan

x

sin

x

x

3

=

1

x

3

(

sin

x

sin

x

cos

x

cos

x

)

tan

x

sin

x

x

3

=

sin

x

x

3

1

cos

x

cos

x

tan

x

sin

x

x

3

=

(

sin

x

x

)

(

1

cos

x

x

2

)

(

1

cos

x

)

We can use now the well known trigonometric limit:

lim

x

0

 

sin

x

x

=

1

and using the trigonometric identity:

sin

2

α

=

1

cos

2

α

2

we have:

lim

x

0

 

1

cos

x

x

2

=

lim

x

0

 

2

sin

2

(

x

2

)

x

2

=

1

2

lim

x

0

 

sin

(

x

2

)

x

2

2

=

1

2

While the third function is continuous so:

lim

x

0

 

1

cos

x

=

1

1

=

1

and we can conclude that:

lim

x

0

 

tan

x

sin

x

x

3

=

lim

x

0

 

(

sin

x

x

)

(

1

cos

x

x

2

)

(

1

cos

x

)

=

1

×

1

2

×

1

=

1

2

graph{(tanx-sinx)/x^3 [-1.25, 1.25, -0.025, 1]}



Similar questions