Math, asked by altamashmarif, 1 year ago

lim x tends to 1, X4-3X2+2/X3-5X2+3x+1

Answers

Answered by Anonymous
11
hope it helps!!!!!!!!!!
Attachments:
Answered by harendrachoubay
6

\lim_{x \to 1 } \dfrac{x^{4}-3x^{2}+2}{x^{3}-5x^{2}+3x+1}=\dfrac{1}{2}.

Step-by-step explanation:

We have,

\lim_{x \to 1 } \dfrac{x^{4}-3x^{2}+2}{x^{3}-5x^{2}+3x+1}

Put x = 1, we get

\dfrac{1^{4}-3(1)^{2}+2}{1^{3}-5(1)^{2}+3(1)+1} = \dfrac{0}{0}, form

Applying L'Hospital rule, we get

\lim_{x \to 1 } \dfrac{4x^{3}-6x+0}{3x^{2}-10x+3+0}

= \lim_{x \to 1 } \dfrac{4x^{3}-6x}{3x^{2}-10x+3}

Put x = 1, we get

=\dfrac{4(1)^{3}-6(1)}{3(1)^{2}-10(1)+3}

=\dfrac{4-6}{6-10}

=\dfrac{-2}{-4}

=\dfrac{1}{2}

Hence,\lim_{x \to 1 } \dfrac{x^{4}-3x^{2}+2}{x^{3}-5x^{2}+3x+1}=\dfrac{1}{2}.

Similar questions