Math, asked by sheefa2909, 3 months ago

lim x tends to π/6[2-√3cos x- sin x/(6x-π)²]​

Answers

Answered by mathdude500
5

\begin{gathered}\Large{\bold{{\underline{Formula \: Used - }}}}  \end{gathered}

 \boxed{ \bf \: sin(x + y) = sinxcosy + cosxsiny}

 \boxed{ \bf \: cos(x + y) = cosxcosy - sinxsiny}

 \boxed{ \bf \:1 - cosx = 2 {sin}^{2} \dfrac{x}{2} }

 \boxed{ \bf \: \tt \:\lim_{h\to0}\dfrac{sinh}{h}  = 1}

\large\underline{\bold{Solution-}}

\tt \:\lim_{x\to \frac{\pi}{6} }\dfrac{2 -  \sqrt{3}cosx  - sinx}{ {(6x - \pi \:)}^{2} }

On directly Substitute the value of x, we get indeterminant form.

So, to solve such questions, we prefer Substitution method.

So,

\tt \: Put \: x = \dfrac{\pi \:}{6}  + h \:  \:  \: As \: x \to \: \dfrac{\pi}{6}  \: so \: h \to \: 0

 \tt  = \:\lim_{h\to0}\dfrac{2 -  \sqrt{3}cos\bigg(\dfrac{\pi \:}{6}   + h\bigg)   - sin\bigg( \dfrac{\pi \:}{6} + h \bigg) }{ {\bigg(6(\dfrac{\pi \:}{6}  + h) - \pi \: \bigg) }^{2} }

\tt  = \:\lim_{h\to0}\dfrac{2 -  \sqrt{3}cos\bigg(\dfrac{\pi \:}{6}   + h\bigg)   - sin\bigg( \dfrac{\pi \:}{6} + h \bigg) }{ {\bigg( \pi \:+6 h - \pi \: \bigg) }^{2} }

\tt \: = \lim_{h\to0}\dfrac{2 -  \sqrt{3}cos\bigg(\dfrac{\pi \:}{6}   + h\bigg)   - sin\bigg( \dfrac{\pi \:}{6} + h \bigg) }{ {\bigg( 6 h \bigg) }^{2} }

\tt  = \:\lim_{h\to0}\dfrac{2 -  \sqrt{3}cos\bigg(\dfrac{\pi \:}{6}   + h\bigg)   - sin\bigg( \dfrac{\pi \:}{6} + h \bigg) }{ {36 {h}^{2} }}  -  - (1)

Consider,

\tt \: \sqrt{3}  \:  cos\bigg(\dfrac{\pi \:}{6}  + h \bigg)

 = \tt \:  \sqrt{3}  \: (cos\dfrac{\pi \:}{6} cosh - sin\dfrac{\pi \:}{6} sinh)

 = \tt \:  \sqrt{3}  \: (\dfrac{ \sqrt{3} }{2}cosh -  \dfrac{1}{2} sinh)

 = \tt \: \dfrac{3}{2}cosh -  \dfrac{ \sqrt{3} }{2} sinh

Again,

Consider,

\tt \: sin\bigg(\dfrac{\pi \:}{6}  + h \bigg)

 = \tt \: sin\dfrac{\pi \:}{6} cosh + cos\dfrac{\pi \:}{6} sinh

 = \tt \: \dfrac{1}{2} cosh + \dfrac{ \sqrt{3} }{2} sinh

On substituting these values in equation (1), we get

\tt \:\lim_{h\to0}\dfrac{2 - \dfrac{ 3}{2} cosh +  \cancel{\dfrac{ \sqrt{3} }{2}sinh} - \dfrac{1}{2} cosh -\cancel {\dfrac{ \sqrt{3} }{2}sinh}}{36 {h}^{2} }

\tt \:\lim_{h\to0}\dfrac{2 - 2cosh}{36 {h}^{2} }

\tt \:\lim_{h\to0}\dfrac{1 - cosh}{18 {h}^{2} }

\tt \:\lim_{h\to0}\dfrac{2 {sin}^{2} \dfrac{h}{2} }{18 {h}^{2} }

\tt \:\dfrac{1}{9} \lim_{h\to0}\dfrac{sin\dfrac{h}{2} \times sin \dfrac{h}{2} }{ {h}^{2} }

\tt \: =\dfrac{1}{9} \:  \lim_{h\to0} \dfrac{sin\dfrac{h}{2} }{\dfrac{h}{2} \times 2 }  \times \dfrac{sin\dfrac{h}{2} }{\dfrac{h}{2} \times 2 }

 \tt \:  =  \:  \dfrac{1}{9 \times 2 \times 2}

\tt \:  = \dfrac{1}{36}

Additional Information :-

 \boxed{ \bf \: \tt \:\lim_{h\to0}\dfrac{tanh}{h}  = 1}

 \boxed{ \bf \: \tt \:\lim_{h\to0}\dfrac{ {e}^{h}  - 1}{h}  = 1}

 \boxed{ \bf \: \tt \:\lim_{h\to0}\dfrac{ {a}^{h}  - 1}{h}  =  log(a) }

 \boxed{ \bf \: \tt \:\lim_{h\to0}\dfrac{  log(1 + h) }{h}  = 1}

 \boxed{ \bf \: \tt \:\lim_{x\to \: a}\dfrac{ {x}^{n}  -  {a}^{n} }{x - a}  =  {na}^{n - 1} }

Similar questions