Math, asked by richaeldisuza, 1 year ago

Lim x tends to a (x+2)^5/2 - (a+2)^5/2 ÷ x-a plzzz solve it by general method

Answers

Answered by Róunak
73
The answer is in the pic ....Hope it helps
Attachments:

richaeldisuza: Thanks a lot when i was doing my ans was coming out 5/2 a^3/2 but urs is the correct one☝....
Róunak: thx
Róunak: share ur doubts with me
richaeldisuza: Yeah sure
richaeldisuza: Plz solve the question one more I hv given lim x tends to a cosx-cosa/ cotx-cota........
Róunak: ok
Róunak: post this question ..i am doing in my copy
Róunak: and share the link to me
richaeldisuza: I hv already posted the question yesterday........
Answered by throwdolbeau
51

Answer:

Value of limit :

\frac{5}{2}\cdot (a+2)^\frac{3}{2}

Step-by-step explanation:

\lim_{x\to a} \frac{(x+2)^{\frac{5}{2}}-(a+2)^{\frac{5}{2}}}{x-a}\\\\\text{Adding and subtracting 2 in the denominator}\\\\ \implies\lim_{x\to a} \frac{(x+2)^{\frac{5}{2}}-(a+2)^{\frac{5}{2}}}{(x+2)-(a+2)}\\\\\text{Using the property : }\lim_{x\to a}\frac{x^n-a^n}{x-a}=n\cdot a^{n-1}\text{ We get, }\\\\\implies \lim_{x\to a }\frac{5}{2}\cdot (a+2)^{\frac{5}{2}-1}\\\\=\frac{5}{2}\cdot (a+2)^\frac{3}{2}

Similar questions