Math, asked by divyanshi6331, 1 year ago

lim x tends to a ( xcosa-acosx/x-a)​

Attachments:

Answers

Answered by 54045103v
3

Step-by-step explanation:

Apply lhopital rule because it in 0/0 form

On differentiating u

get

( Cosa+asinx) /1

Now apy limit to the above form u get...

Cosa+a Sina...

Hope it helps u...

Answered by lublana
1

\lim_{x\rightarrow a}\frac{xcosa-acosx}{x-a}=cosa+asin a

Step-by-step explanation:

\lim_{x\rightarrow a}\frac{xcosa-acosx}{x-a}

When substitute the value of x

Then ,\frac{acosa-acosa}{a-a}

=\frac{0}{0} form

When 0/0 form  formed then apply L' hospital rule

By using L'hospital rule then, we get

\lim__x\rightarrow a}\frac{cosa+asinx}{1}

By using  formula \frac{d(cosx}{dx}=-sinx,\frac{dx^n}{dx}=nx^{n-1}

Now, substitute the value of x

Then, we get

cosa+asina

#Learns more:

https://brainly.in/question/278630

Similar questions