Math, asked by sss1140, 3 months ago

lim x tends to infinity
 \frac{(3x + 3)!}{(x + 1)^{3}(3x)!}

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\displaystyle \lim_{x \:  \to \:  \infty } \: \sf \: \dfrac{(3x + 3)!}{(x + 1)^{3}(3x)!}

\rm \:  \:  =  \: \displaystyle \lim_{x \:  \to \:  \infty } \: \sf \: \dfrac{(3x + 3)(3x + 2)(3x + 1) \:  \cancel{(3x)!}}{(x + 1)^{3} \cancel{(3x)!}}

\rm \:  \:  =  \: \displaystyle \lim_{x \:  \to \:  \infty } \: \sf \: \dfrac{(3x + 3)(3x + 2)(3x + 1)}{(x + 1)^{3}}

\rm \:  \:  =  \: \displaystyle \lim_{x \:  \to \:  \infty } \: \sf \: \dfrac{x \bigg(3 +  \dfrac{3}{x}  \bigg)x \bigg(3 +  \dfrac{2}{x} \bigg)x \bigg(3 +  \dfrac{1}{x} \bigg)}{ {x}^{3} \bigg(1 +  \dfrac{1}{x} \bigg)^{3}}

\rm \:  \:  =  \: \displaystyle \lim_{x \:  \to \:  \infty } \: \sf \: \dfrac{ \bigg(3 +  \dfrac{3}{x}  \bigg) \bigg(3 +  \dfrac{2}{x} \bigg) \bigg(3 +  \dfrac{1}{x} \bigg)}{ \bigg(1 +  \dfrac{1}{x} \bigg)^{3}}

\rm \:  \:  =  \: \dfrac{(3  + 0)\times (3 + 0) \times (3 + 0)}{ {(1 + 0)}^{3} }

\rm \:  \:  =  \: \dfrac{3 \times 3 \times 3}{1}

\rm \:  \:  =  \: 27

Hence,

 \:  \:  \:  \:  \:  \:  \: \red{ \boxed{\bf :\longmapsto\:\displaystyle \lim_{x \:  \to \:  \infty } \: \bf \: \dfrac{(3x + 3)!}{(x + 1)^{3}(3x)!} = 27}}

Additional Information :-

\begin{gathered}(1)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{sin \: x}{x} \:  =  \: 1 }}}}}} \\ \end{gathered}

\begin{gathered}(2)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{tan \: x}{x} \:  =  \: 1 }}}}}} \\ \end{gathered}

\begin{gathered}(3)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{tan^{ - 1}  \: x}{x} \:  =  \: 1 }}}}}} \\ \end{gathered}

\begin{gathered}(4)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{sin^{ - 1}  \: x}{x} \:  =  \: 1 }}}}}} \\ \end{gathered}

\begin{gathered}(5)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{log(1 \:  +  \: x)}{x} \:  =  \: 1 }}}}}} \\ \end{gathered}

\begin{gathered}(6)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{ {e}^{x} - 1 }{x} \:  =  \: 1 }}}}}} \\ \end{gathered}

\begin{gathered}(7)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: { \bigg(x + 1 \bigg)}^{ \dfrac{1}{x} }  \:  =  \: e }}}}}} \\ \end{gathered}

\begin{gathered}(8)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{ {a}^{x} - 1 }{x} \:  =  \:  log(a)  }}}}}} \\ \end{gathered}

Similar questions