Math, asked by vangotra94pczkcf, 1 year ago

lim x tends to infinity (√x²+x-1 -x)

Answers

Answered by Parwez313
2

Answer:

1/2

Step-by-step explanation:

Hope I can clear your doubt

Attachments:
Answered by halamadrid
0

As limit x tends to ∞, (\sqrt{x^{2} +x-1}  - x) tends to 1/2.

Given:

(\sqrt{x^{2} +x-1}  - x)

To Find:

\lim_{x \to \infty}  (\sqrt{x^{2} +x-1}  - x) =?

Solution:

Rationalizing (\sqrt{x^{2} +x-1}  - x) , we get

(\sqrt{x^{2} +x-1}  - x) =  × \frac{\sqrt{x^{2} +x-1}+x}{\sqrt{x^{2} +x-1}+ x}

⇒ (\sqrt{x^{2} +x-1}  - x) =\frac{({x^{2} +x-1})^{2} -x^{2} }{\sqrt{x^{2} +x-1}+ x}

⇒ (\sqrt{x^{2} +x-1}  - x) = \frac{{x} -1 }{\sqrt{x^{2} +x-1}+ x}

Dividing numerator and denominator by x, we have

(\sqrt{x^{2} +x-1}  - x) = \frac{1-\frac{1}{x} } {\sqrt{1 +\frac{1}{x} -\frac{1}{x^{2}} }+ 1}        ......................(I)

We know that as x takes on larger values, 1/x tends to 0, i.e.

\lim_{x \to \infty} \frac{1}{x} = 0

\lim_{x \to \infty} \frac{1}{x^{2} } = 0

Hence, as x tends to ∞, equation (I) becomes

\lim_{x \to \infty}  (\sqrt{x^{2} +x-1}  - x) = \lim_{x \to \infty}  \frac{1-\frac{1}{x} } {\sqrt{1 +\frac{1}{x} -\frac{1}{x^{2}} }+ 1} = (1 - 0)/ (√1 + 1) = 1/2 .

\lim_{x \to \infty}  (\sqrt{x^{2} +x-1}  - x) = 1/2

Hence, As limit x tends to ∞, (\sqrt{x^{2} +x-1}  - x) tends to 1/2.

#SPJ3

Similar questions