Math, asked by wagh17, 11 months ago

lim x tends to pi/4 tan^2x-cot^2x/secx-cosecx​

Answers

Answered by Anonymous
3

Step-by-step explanation:

see the attachment....

#BAL

Attachments:
Answered by harendrachoubay
6

\lim_{x \to \dfrac{\pi}{4} } \dfrac{\tan^2x-\cot^2x}{\sec x-\csc x​}=2\sqrt{2}

Step-by-step explanation:

We have,

\lim_{x \to \dfrac{\pi}{4} } \dfrac{\tan^2x-\cot^2x}{\sec x-\csc x​}

To find, the value of \lim_{x \to \dfrac{\pi}{4} } \dfrac{\tan^2x-\cot^2x}{\sec x-\csc x​}  =?

\lim_{x \to \dfrac{\pi}{4} } \dfrac{\tan^2x-\cot^2x}{\sec x-\csc x​}

=\lim_{x \to \dfrac{\pi}{4} } \dfrac{1+\sec^2x-(1+\csc^2x)}{\sec x-\csc x​}

Using the trigonometric identity,

\tan^2A=1+\sec^2A and \cot^2x=1+\csc^2x

=\lim_{x \to \dfrac{\pi}{4} } \dfrac{1+\sec^2x-1-\csc^2x}{\sec x-\csc x​}

=\lim_{x \to \dfrac{\pi}{4} } \dfrac{\sec^2x-\csc^2x}{\sec x-\csc x​}

=\lim_{x \to \dfrac{\pi}{4} } \dfrac{(\sec x+\csc x)(\sec x-\csc x)}{\sec x-\csc x​}

Using the identity

a^{2} -b^{2} =(a+b)(a-b)

=\lim_{x \to \dfrac{\pi}{4} } \sec x+\csc x

Put x=\dfrac{\pi}{4}, we get

=\sec \dfrac{\pi}{4} +\csc \dfrac{\pi}{4}

=\sqrt{2} +\sqrt{2}

=2\sqrt{2}

Hence, \lim_{x \to \dfrac{\pi}{4} } \dfrac{\tan^2x-\cot^2x}{\sec x-\csc x​}=2\sqrt{2}

Similar questions