Math, asked by sonali98521, 11 months ago

lim x tends to pie/2 root2- root 1+sinx/root 2 cos^2x​

Answers

Answered by sinhamanu
4

2 cos a is the correct answer

Answered by Anonymous
8

The solution of the given limit is

\lim_{x \to \frac{\pi }{2} \1} \frac{\sqrt{2}-\sqrt{1+sinx}  }{\sqrt{2cos^{2} x} } = 0

  • For solving the given limit,

  \lim_{x \to \frac{\pi }{2} \1} \frac{\sqrt{2}-\sqrt{1+sinx}  }{\sqrt{2cos^{2} x} }

  \lim_{x \to \frac{\pi }{2} \1} \frac{\sqrt{2}-\sqrt{1+sinx}  }{\sqrt{2} cosx} }       - (1)

  • Take  x = \frac{\pi }{2} - h

     ∴         h = \frac{\pi }{2} - x

    Now as x→ \frac{\pi }{2}

             h→ 0

Now, putting the value of 'x' in (1) , the given limit becomes,

         \lim_{h \to 0 \1} \frac{\sqrt{2}-\sqrt{1+sin(\frac{\pi }{2}-h) }  }{\sqrt{2}cos(\frac{\pi }{2} -h)} }

  • Using the formulas

       sin(\frac{\pi }{2} -h) = cosh\\and cos(\frac{\pi }{2}-h) = sinh

       we get

          \lim_{h \to 0 \1} \frac{\sqrt{2}-\sqrt{1+cosh}  }{\sqrt{2}sinh} }        - (2)

  • Now, Using the identity

        cos2x = 2cos^{2}x - 1 \\ 1 + cos2x = 2cos^{2} x

        Here we have h = 2x and therefore x = \frac{h}{2}

        Now, (2) becomes

          \lim_{h \to 0 \1} \frac{\sqrt{2}-\sqrt{2cos^{2} \frac{h}{2} }  }{\sqrt{2}sinh} }

          \lim_{h \to 0 \1} \frac{\sqrt{2}-\sqrt{2}cos \frac{h}{2}   }{\sqrt{2}sinh} }

          \lim_{h \to 0 \1} \frac{\sqrt{2}(1-cos \frac{h}{2} )  }{\sqrt{2}sinh} }

          \lim_{h \to 0 \1} \frac{(1-cos \frac{h}{2} )  }{sinh} }

  • Now, Using the identity

         cos2x = 1 - 2sin^{2}x \\1-cos2x = 2sin^{2}x

         we get,

         \lim_{h \to 0 \1} \frac{2sin^{2}\frac{h}{4}    }{sinh} }

  • dividing both numerator and denominator by 'h', we get

          \lim_{h \to 0 \1} \ \frac{\frac{2sin^{2}\frac{h}{4}  }{\frac{h^{2} }{16} \frac{16}{h}  } }{\frac{sinh}{h} }  }

           \frac{h}{8}  \frac{ \lim_{h \to 0\1} \frac{sin^{2}\frac{h}{4}  }{(\frac{h}{4}) ^{2} }  }{ \lim_{h \to 0\1} \frac{sinh}{h}  }

  • By using standard sine limit that is

          \lim_{x \to 0\1} \frac{sinx}{x} = 1, we get

          \frac{h}{8}  \frac{ \lim_{h \to 0\1} \frac{sin^{2}\frac{h}{4}  }{(\frac{h}{4}) ^{2} }  }{ \lim_{h \to 0\1} \frac{sinh}{h}  } =  \lim_{h \to 0\1} \frac{h}{8} (\frac{1}{1}  )

          \lim_{h \to 0\1} \frac{h}{8}  = 0

  • Therefore the required solution of the given limit is,

          \lim_{x \to \frac{\pi }{2} \1} \frac{\sqrt{2}-\sqrt{1+sinx}  }{\sqrt{2cos^{2} x} } = 0

Similar questions