Math, asked by anantrajsharma2004, 4 months ago

Lim x tends to zero 1 - cos x upon sin square x​

Answers

Answered by jitendra12iitg
0

Answer:

The answer is \dfrac{1}{2}

Step-by-step explanation:

 \displaystyle \lim_{x\to 0}\dfrac{1-\cos x }{\sin^2x}

Rationalize numerator and simplify

=\displaystyle \lim_{x\to 0}\dfrac{1-\cos x }{\sin^2x}\times \dfrac{1+\cos x}{1+\cos x}\\\\\\=\displaystyle \lim_{x\to 0}\dfrac{1-\cos^2 x }{\sin^2x}\times \dfrac{1}{1+\cos x}\\\\\\=\displaystyle \lim_{x\to 0}\dfrac{\sin^2x }{\sin^2x}\times \dfrac{1}{1+\cos x}\\\\\\=\displaystyle \lim_{x\to 0}\dfrac{1}{1+\cos x}=\dfrac{1}{1+\cos 0}=\dfrac{1}{1+1}=\dfrac{1}{2}

Similar questions