Math, asked by nehabisht59, 1 year ago

lim x trend b (x^b-b^x)/( x^x-b^b)​

Answers

Answered by laxmanacharysangoju
5

Answer:

x/b (b)^(x-b)

Step-by-step explanation:

lt x trend to b (x^n-a^n)/(x-a)= n.a^(n-1)

Attachments:
Answered by swethassynergy
3

The value of  \lim_{x \to b} \frac{x^{b}-b^{x}  }{x^{x} -b^{b}  }   is   \frac{(1-\log b)}{( \log b-1)} .

Step-by-step explanation:

Given:

\lim_{x \to b} \frac{x^{b}-b^{x}  }{x^{x} -b^{b}  }

To Find:

The value of  \lim_{x \to b} \frac{x^{b}-b^{x}  }{x^{x} -b^{b}  } .

Formula Used:

As per  L' Hospital rule-

If \lim_{x \to \ a} \frac{f(x)}{g(x)} =\frac{0}{0} \ or\ \frac{\infty}{\infty},   then =\lim_{x \to \ a} \frac{f'(x)}{g'(x)} .

\frac{d}{dx} x^{n}   = nx^{n-1}

\frac{d}{dx} a^{x}  = a^{x} \log a

Solution:

As given - \lim_{x \to b} \frac{x^{b}-b^{x}  }{x^{x} -b^{b}  } .

\lim_{x \to b} \frac{x^{b}-b^{x}  }{x^{x} -b^{b}  } =  \frac{b^{b}-b^{b}  }{b^{b} -b^{b}  } =\frac{0}{0}

Then applying the L' Hospital rule.

      = \lim_{x \to b} \ \frac{\frac{d}{dx}(x^{b}-b^{x})  }{\frac{d }{dx}(x^{x}-b^{b}  )  }

      = \lim_{x \to b} \ \frac{\frac{d}{dx}(x^{b})-\frac{d}{dx} (b^{x})  }{\frac{d }{dx}(x^{x})- \frac{d}{dx} (b^{b}  )  }                      

      = \lim_{x \to b} \frac{( bx^{b-1} - b^{x}\log b  )}{x^{x}( logx+1)-0 }                            Let \y=x^{x}  \\\log y= x \log x\\On\ differentiating \ w.r.t. x, we\ get.\\\frac{1}{y} \frac{dy}{dx} =\frac{x}{x} + \log x\\ \frac{dy}{dx} =y( 1+ \log x)\\ \frac{d(x^{x} )}{dx} =x^{x} ( 1+ \log x)\\        

      =  \frac{( b\ b^{b-1} - b^{b}\log b  )}{b^{b}( \log b+1)-0 }

      =  \frac{( \ b^{b} - b^{b}\log b  )}{b^{b}( \log b+1) }

      =  \frac{ \ b^{b}(1 - \log b  )}{b^{b}( \log b+1) }

      =    \frac{ \ (1 - \log b  )}{( \log b+1) }

Thus,the value of  \lim_{x \to b} \frac{x^{b}-b^{x}  }{x^{x} -b^{b}  }   is   \frac{(1-\log b)}{( \log b-1)} .

Similar questions