Math, asked by Ann2000, 1 year ago

Lim x-π (x-π) tan x/2. Find limit.

Answers

Answered by Sharad001
82

Question :-

 \displaystyle \lim_{x \to \pi}  \: (x -  \pi) \:  \tan  \big(\frac{x}{2} \big)  \\

Answer :-

\boxed{  \displaystyle \lim_{x \to \pi}  \: (x -  \pi) \:  \tan  \big(\frac{x}{2} \big)   = 0} \:

Used property :-

  \star \: \boxed{\displaystyle \lim\sf   \frac{ \tan h}{h}  = 1}

Solution :-

We Have

 \to\displaystyle \lim_{x \to \pi}  \: (x -  \pi) \:  \tan \big( \frac{x}{2}  \big)\:  \\  \\  \to \: \displaystyle \lim_{x \to \pi}  \: (x -  \pi) \:  \tan  \big(\frac{x}{2} \big) \times  \frac{ \big( \frac{x}{2}  \big)}{ \big(  \frac{x}{2} \big) }  \\  \\  \to \: \displaystyle \lim_{x \to \pi}  \:  \frac{x}{2} (x -  \pi) \:  \frac{ \tan \big( \frac{x}{2}  \big)}{ \big( \frac{x}{2}  \big)}  \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \because \:  \boxed{\displaystyle \lim\sf   \frac{ \tan h}{h}  = 1} \:  \\  \therefore \\  \to \: \displaystyle \lim_{x \to \pi}  \:  \frac{x}{2} (x -  \pi) \:  \:  \\  \\  \to \: \displaystyle \lim_{x \to \pi}  \:  \frac{ {x}^{2} }{2} -   \frac{x}{2} \pi  \:  \\  \mathbb{ \red{TAKING}  \:  \: LIMIT  \: } \\   \\  \to \frac{ { \pi}^{2} }{2}  -  \frac{ \pi}{2}  \times  \pi \\  \\  \to \:  \frac{ { \pi}^{2} }{2}  -  \frac{  { \pi}^{2} }{2}  \\  \\  \boxed{  \displaystyle \lim_{x \to \pi}  \: (x -  \pi) \:  \tan  \big(\frac{x}{2} \big)   = 0}

Answered by Abhijit999
0

Answer:0

Step-by-step explanation:

The other answer has a mistake

Because - lim (tan h)/h = 1 is true when lim h----->0 but it is not the case in the question

For correct answer u can refer the picture

Attachments:
Similar questions