Math, asked by Gowtham20000, 2 months ago

lim xtend to 0 root 1+x-1divided x​

Answers

Answered by khushisingh8583
1

Answer:

0 × 1×1 +-1/

0×1+-1 /

0 + - 1 /

= -1

Answered by mathdude500
3

\bf \: \displaystyle \rm \ \lim_{ x\to0} \dfrac{  \sqrt{1 + x}  - 1}{ x}

☆ On substituting the value of x directly, we get indeterminant form. So, on rationalizing, we get

\bf \: =  \displaystyle \rm \ \lim_{ x\to0} \bigg( \dfrac{  \sqrt{1 + x}  - 1}{ x} \times \dfrac{ \sqrt{1 + x} + 1 }{ \sqrt{1 + x}  + 1}  \bigg)

\bf \: = \displaystyle \rm \ \lim_{ x\to0} \dfrac{1 + x - 1 }{ x( \sqrt{1 + x}  + 1) }

\bf \: = \displaystyle \rm \ \lim_{ x\to0} \dfrac{x }{x( \sqrt{1 + x}  + 1) }

\bf \: = \displaystyle \rm \ \lim_{ x\to0} \dfrac{ 1}{ \sqrt{1 + x} + 1  }

\bf \:  = \dfrac{1}{2}

\large{\boxed{\boxed{\bf{Hence \: \bf \: \displaystyle \rm \ \lim_{ x\to0} \dfrac{  \sqrt{1 + x}  - 1}{ x} = \dfrac{1}{2} }}}}

Similar questions