Lim y->x (y sec y - x sec x/ y-x)
Answers
Answered by
3
L - Hospital is the easiest method for solving these type of questions .
Here given,![\bold{\lim_{y\to\ x}{\frac{ysecy-xsecx}{y-x}}} \bold{\lim_{y\to\ x}{\frac{ysecy-xsecx}{y-x}}}](https://tex.z-dn.net/?f=%5Cbold%7B%5Clim_%7By%5Cto%5C+x%7D%7B%5Cfrac%7Bysecy-xsecx%7D%7By-x%7D%7D%7D)
put y = x for checking form of limit .
(xsecx - xsecx)/(x - x) = 0/0 is the form of limit .
We know, we can apply L- Hospital in 0/0 and ∞/∞ forms .
so, app L- Hospital rule .
Differentiate numerator and denominator separately .
![\bold{\lim_{y\to\ x}{\frac{y(secy.tany) + secy - 0}{1 - 0}}} \bold{\lim_{y\to\ x}{\frac{y(secy.tany) + secy - 0}{1 - 0}}}](https://tex.z-dn.net/?f=%5Cbold%7B%5Clim_%7By%5Cto%5C+x%7D%7B%5Cfrac%7By%28secy.tany%29+%2B+secy+-+0%7D%7B1+-+0%7D%7D%7D+)
Now, put y = x
Value of limit is x(secx.tanx) + secx
Hence, answer is x(secx.tanx) + secx
Here given,
put y = x for checking form of limit .
(xsecx - xsecx)/(x - x) = 0/0 is the form of limit .
We know, we can apply L- Hospital in 0/0 and ∞/∞ forms .
so, app L- Hospital rule .
Differentiate numerator and denominator separately .
Now, put y = x
Value of limit is x(secx.tanx) + secx
Hence, answer is x(secx.tanx) + secx
Answered by
3
Solution:-
given by:-
》Lim y->x (y sec y - x sec x/ y-x)
》(0/0 form)
》applied L' HOSPITAL RULE
》Lim y->x ( d/dy(ysecy) -d/dy(xsec)/(d/dy(y-x)
》= Lim y->x [(yd/dx(secy)+(secy)d/dx(y)-0)]/1-0
》= Lim y->x[ ysecy.tany +secy.1]/1
》= Lim y->x (ysecy.tany+secy)
》= [ x(secx.tanx )+secx] ans
☆i hope is help☆
given by:-
》Lim y->x (y sec y - x sec x/ y-x)
》(0/0 form)
》applied L' HOSPITAL RULE
》Lim y->x ( d/dy(ysecy) -d/dy(xsec)/(d/dy(y-x)
》= Lim y->x [(yd/dx(secy)+(secy)d/dx(y)-0)]/1-0
》= Lim y->x[ ysecy.tany +secy.1]/1
》= Lim y->x (ysecy.tany+secy)
》= [ x(secx.tanx )+secx] ans
☆i hope is help☆
Similar questions
Social Sciences,
8 months ago
Hindi,
8 months ago
Math,
1 year ago
Math,
1 year ago
Biology,
1 year ago