Math, asked by Anonymous, 6 days ago

limit class 11
lim(x -> sinx) (e^x - e^ sinx )/(x - sinx) ​

Answers

Answered by Anonymous
8

Appropriate Question:

 \displaystyle  \tt\lim \limits_{x \to 0} \frac{ {e}^{x}  -  {e}^{ \sin(x) } }{ x  -  \sin(x) }

Step-by-step explanation:

We have,

 \displaystyle  \tt \lim \limits_{ x \to 0} \frac{ {e}^{x}  -  {e}^{ \sin(x) } }{x -  \sin(x) }

 \displaystyle    = \tt \lim \limits_{ x \to 0} \frac{  {e}^{ \sin(x)} ({e}^{x -  \sin(x)}  -  1)}{x -  \sin(x) }

{\displaystyle    = \tt \lim \limits_{ x  \to0} \frac{ {e}^{x -  \sin(x)}  -  1}{x -  \sin(x) } \cdot {e}^{ \sin(x)}}

Using standard limit, we get:

{\displaystyle    = \tt \lim \limits_{ x\to0} (1) \cdot {e}^{ \sin(x)}}

{\displaystyle    = \tt {e}^{ \sin(0)}}

{\displaystyle    = \tt {e}^0}

{\displaystyle    = \tt {e}^1}

Similar questions