Math, asked by GUJJAR0096, 5 months ago

limit x➡️1 Z^1/3-1÷Z^1/6-1

I don't need rubbish​

Answers

Answered by aryan073
4

Question :

\red\bigstar\sf{lim_{x \to 1} \: \dfrac{z^(dfrac{1}{3}) -1}{z^(\dfrac{1}{6}) -1}}

________________________________________

To find :

\bf{ the \: value \: of \: lim_{x \to 0}=?}

________________________________________

Solution :

\\ \implies\sf{lim_{x \to 1} \: \dfrac{z^({\dfrac{1}{3}})-1}{z^({\dfrac{1}{6}})-1}}

________________________________________

By using L -Hospital rule:

\\ \implies\sf{lim_{ x \to 1 } \: \dfrac{z^({\dfrac{1}{3})}} {z^({\dfrac{1}{6}})-1}}

\\ \implies\sf{lim_{x \to 1} \: \dfrac{z^({\dfrac{1}{3})}}{z^({\dfrac{1}{6}})-1}}

\\ \implies\sf{lim_{x \to 1} \: \dfrac{dy}{dx}\dfrac{z^({\dfrac{1}{3}) -1}}{z^({\dfrac{1}{6}})-1}}

\\ \implies\sf{lim_{x \to 1} \: \dfrac{(\dfrac{1}{3})z^{(\dfrac{-2}{3}})-0}{(\dfrac{1}{6})z^{(\dfrac{-5}{6})}}}

\\ \implies\sf{lim_{ x \to 1 } \: 2 z^{\dfrac{-2}{3}-\dfrac{5}{6}}}

\\ \implies\sf{lim_{ x \to 1} \: 2 z^{\dfrac{-2}{3}-\dfrac{+5}{6}}}

\\ \implies\sf{lim_{x \to 1 } \:  2z^{\dfrac{-4-5}{6}}}

\\ \implies\sf{lim_{ x \to 1 }\: 2z^{\dfrac{-3}{2}}}

Put x=1 in this term we get

\\ \implies\sf{lim_{x \to 1} 2 \times 1^{\bigg({\dfrac{-3}{2}\bigg)}}}

\\ \implies\sf{lim_{x \to 1} 2}

The answer will be 2

Similar questions