Math, asked by naimbuya113, 5 months ago

limit x tends to 0 sin5x - sinx / sin4x​

Answers

Answered by aryan073
1

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Question :

\large\red\bigstar{\rm{ lim_{ x \to 0}  \: \dfrac{sin5x-sinx}{sin4x}}}

Properties :

\large\blue\bigstar\rm{lim_{ x \to 0} \: \dfrac{sinx}{x}=1}

\large\blue\bigstar\rm{lim_{x \to 0} \: \dfrac{tanx}{x} =1}

\large\blue\bigstar\rm{lim_{ x \to 0 } \: \dfrac{cosx}{x} =1 }

Solution :

\\ \implies\large\sf{lim_{ x \to 0} \dfrac{sin5x - sinx}{sin4x}}

\\ \implies\large\sf{lim_{ x \to 0} \: \dfrac{sin4x}{sin4x}}

\\ \implies\large\sf{ lim_{x \to 0 } \: \cancel\dfrac{sin4x}{sin4x} =1}

\\ \implies\large\sf{ lim_{ x \to 0}  \: \: 1}

\\ \therefore\boxed{\large\sf{lim_{x \to 0} =1}}

■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□

Answered by Anonymous
0

Step-by-step explanation:

this question's answer is 1

Attachments:
Similar questions