Math, asked by shivakumarshiva20061, 5 months ago

prove that (sin A + cosec A)^2 + ( cos A + sec A) ^2 = 7 + tan^2 A + cot^2 A​

Answers

Answered by Anonymous
0

Answer:

(sinA+cscA)

2

+(cosA+secA)

2

=sin

2

A+csc

2

A+2sinAcscA+cos

2

A+sec

2

A+2cosAsecA .......As[a²+b²+2ab=(a+b)²]

=sin

2

A+csc

2

A+2sinA×

sinA

1

+cos

2

A+sec

2

A+2cosA

cosA

1

.

........... since secA=

cosA

1

and cscA=

sinA

1

=sin

2

A+csc

2

A+2+cos

2

A+sec

2

A+2

=(sin

2

A+cos

2

A)+csc

2

A+sec

2

A+4

=1+1+cot

2

A+1+tan

2

A+4 ........... since csc

2

A=1+cot

2

A and sec

2

A=1+tan

2

A

=7+tan

2

A+cot

2

A

Hence proved.

Answered by aditisundaram35
0

Step-by-step explanation:

(sinA+cscA)

2

+(cosA+secA)

2

=sin

2

A+csc

2

A+2sinAcscA+cos

2

A+sec

2

A+2cosAsecA .......As[a²+b²+2ab=(a+b)²]

=sin

2

A+csc

2

A+2sinA×

sinA

1

+cos

2

A+sec

2

A+2cosA

cosA

1

.

........... since secA=

cosA

1

and cscA=

sinA

1

=sin

2

A+csc

2

A+2+cos

2

A+sec

2

A+2

=(sin

2

A+cos

2

A)+csc

2

A+sec

2

A+4

=1+1+cot

2

A+1+tan

2

A+4 ........... since csc

2

A=1+cot

2

A and sec

2

A=1+tan

2

A

=7+tan

2

A+cot

2

A

Hence proved.

Similar questions