Math, asked by baberanaaz, 4 months ago

Limit x tends to infinity
5x^2+3x+1/x^2-x+1
Answer is 5

Attachments:

Answers

Answered by Anonymous
20

Solution :

:\implies \sf \lim_{x \to \infty} \dfrac{5x^{2} + 3x + 1}{x^{2} - x + 1} \\ \\

By dividing x²(Here, the greatest power of x) to both the Numerator and Denominator in the equation, we get :-

:\implies \sf \lim_{x \to \infty} \dfrac{5x^{2} + 3x + 1}{x^{2} - x + 1} = \lim_{x \to \infty} \dfrac{\dfrac{5x^{2} + 3x + 1}{x^{2}}}{\dfrac{x^{2} - x + 1}{x^{2}}} \\ \\

:\implies \sf \lim_{x \to \infty} \dfrac{5x^{2} + 3x + 1}{x^{2} - x + 1} = \lim_{x \to \infty} \dfrac{\dfrac{5x^{2}}{x^{2}} + \dfrac{3x}{x^{2}} + \dfrac{1}{x^{2}}}{\dfrac{x^{2}}{x^{2}} - \dfrac{x}{x^{2}} + \dfrac{1}{x^{2}}} \\ \\

:\implies \sf \lim_{x \to \infty} \dfrac{5x^{2} + 3x + 1}{x^{2} - x + 1} = \lim_{x \to \infty} \dfrac{5 + \dfrac{3}{x} + \dfrac{1}{x^{2}}}{1 - \dfrac{1}{x} + \dfrac{1}{x^{2}}} \\ \\

We know that, when limit x → ∞, then 1/x = 0 (Same 1/x² will be 0), so by applying it here, we get :

:\implies \sf \lim_{x \to \infty} \dfrac{5x^{2} + 3x + 1}{x^{2} - x + 1} = \dfrac{5 + 0 + 0}{1 - 0 + 0} \\ \\

:\implies \sf \lim_{x \to \infty} \dfrac{5x^{2} + 3x + 1}{x^{2} - x + 1} = 5 \\ \\

\boxed{\therefore \sf \lim_{x \to \infty} \dfrac{5x^{2} + 3x + 1}{x^{2} - x + 1} = 5} \\ \\

Answered by BrainlyMan05
19

Answer:

\lim_{x \rightarrow \infty} => 5

Step-by-step explanation:

\lim_{x \rightarrow \infty} = \dfrac{5x^2+3x+1}{x^2-x+1}

Dividing x^2 in all the numbers at denominator:

\lim_{x \rightarrow \infty} = \sf{(5x^2/x^2)+(3x/x^2)+(1/x^2) /(x^2/x^2)-(x/x^2)+(1/x^2)}

\lim_{x \rightarrow \infty} = \sf{(5+(3/x)+(1/x^2) /1-(1/x)+(1/x^2)}

\lim{x \rightarrow \infty} => 1/x

So, \lim{x \rightarrow \infty} is also => \dfrac{1}{x^2} = 0

So, \lim_{x \rightarrow \infty} = \sf{(5+(3/x)+(1/x^2) /1-(1/x)+(1/x^2)} = \dfrac{5+ 3(0)+0}{(1-0+0)}

\dfrac{5+ 0+0}{(1-0+0)}

= 5

Hence,

Final answer:

\lim_{x \rightarrow \infty} => 5

Similar questions