Math, asked by baberanaaz, 2 months ago

Limit x tends to zero 2^x-1/e^2x-1

Attachments:

Answers

Answered by Asterinn
19

 \rm \longrightarrow  \displaystyle  \large\lim_ { \rm \: x \to \:0 }{ \rm \:  \dfrac{ {2}^{x} - 1 }{ {e}^{2x} - 1 } }

If we put x =0 in the above expression then we will get 0/0 form which is an indeterminate form. So, we will apply L'Hospital rule.

 \rm \longrightarrow  \displaystyle  \large\lim_ { \rm \: x \to \:0 }{ \rm \:  \dfrac{  \dfrac{d({2}^{x} - 1 )}{dx} }{\dfrac{d( {e}^{2x} - 1 )}{dx} } }

\rm \longrightarrow  \displaystyle  \large\lim_ { \rm \: x \to \:0 }{ \rm \:  \dfrac{  \dfrac{d({2}^{x} )}{dx}  \:  -  \dfrac{d(1 )}{dx} }{\dfrac{d( {e}^{2x}  )}{dx} -  \dfrac{d(1 )}{dx}} }

\rm \longrightarrow  \displaystyle  \large\lim_ { \rm \: x \to \:0 }{ \rm \:  \dfrac{  ({2}^{x} )ln2\:  -  0 }{2 {e}^{2x} - 0} }

\rm \longrightarrow  \displaystyle  \large\lim_ { \rm \: x \to \:0 }{ \rm \:  \dfrac{ ln2 \:  \times  ({2)}^{x}  \: }{2 \: \times   ({e)}^{2x} } }

Now put x = 0 :-

\rm \longrightarrow  \displaystyle   \large { \rm \:  \dfrac{ ln2 \:  \times  ({2)}^{0}  \: }{2 \: \times   ({e)}^{0} } }

\rm \longrightarrow  \displaystyle   \large { \rm \:  \dfrac{ ln2 \:  \times  1  \: }{2 \: \times   1 } }

\rm \longrightarrow  \displaystyle   \large { \rm \:  \dfrac{ ln2  }{2  } }

 \rm \therefore  \displaystyle  \large\lim_ { \rm \: x \to \:0 }{ \rm \:  \dfrac{ {2}^{x} - 1 }{ {e}^{2x} - 1 } } = \large { \rm \:  \dfrac{ ln2  }{2  } }

Additional Information :-

d(e^x)/dx = e^x

d(x^n)/dx = n x^(n-1)

d(ln x)/dx = 1/x

d(sin x)/dx = cos x

d(cos x)/dx = - sin x

d(tan x)/dx = sec² x

d(sec x)/dx = tan x * sec x

d(cot x)/dx = - cosec²x

d(cosec x)/dx = - cosec x * cot x

Attachments:

Ataraxia: Nice!!!!! :D
Asterinn: Thank you! ❤️
Similar questions