Math, asked by limca1, 1 year ago

limit x tends to zero log cosx /sin^2x

Answers

Answered by 07161020
7
HEY THERE,

lim    [log(cos x)/sinx]
x→0

Applying L Hospital's rule:--

=lim   [-sin x/sin x*2cos²x]
  x→0

=lim   [-1/2cos²x]
  x→0 

=-1/2

HOPE IT HELPS
  
Answered by harendrachoubay
8

\lim_{x \to 0} \dfrac{\log \cos x}{\sin^2 x}=\dfrac{-1}{2}

Step-by-step explanation:

We have,

\lim_{x \to 0} \dfrac{\log \cos x}{\sin^2 x}

To find, \lim_{x \to 0} \dfrac{\log \cos x}{\sin^2 x}=?

\lim_{x \to 0} \dfrac{\log \cos x}{\sin^2 x} (\dfrac{0}{0} form)

Applying L'Hopital's rule,

\lim_{x \to 0} \dfrac{\dfrac{-\sin x}{\cos x} }{2\sin x\cos x}

=\lim_{x \to 0} \dfrac{-1}{2\cos^2 x}

Put x = 0, we get

=\dfrac{-1}{2\cos^2 0}

=\dfrac{-1}{2\times 1}

[ ∵ cos 0° = 1]

=\dfrac{-1}{2}

Hence, \lim_{x \to 0} \dfrac{\log \cos x}{\sin^2 x}=\dfrac{-1}{2}

Similar questions