Math, asked by ghadgepriyanka2341, 11 months ago

limit X tends to zero sin x into 1 minus Cos 2 X upon x cube​

Answers

Answered by Sharad001
3

Question :-

 \to \:  \tt \: \lim_{x \to 0}  \frac{ \sin x(1 -  \cos2x)}{ {x}^{3} }  \\

Answer :-

\to \boxed{ \tt \: \lim_{x \to 0}  \frac{ \sin x(1 -  \cos2x)}{ {x}^{3} }   = 2} \:

Used formula :-

  \boxed{\star} \tt \:  \:  \:  1 -  \cos2x = 2 { \sin}^{2} x \\  \\  \boxed{ \star} \:  \tt \: \lim \:  \frac{ \sin h}{h}  = 1

Solution :-

We have ,

 \to \:  \tt \: \lim_{x \to 0}  \frac{ \sin x(1 -  \cos2x)}{ {x}^{3} }  \\ \:  \\  \because \tt 2  { \sin}^{2} x = 1 -  \cos 2x \\  \\  \to \:  \:  \tt \: \lim_{x \to 0}  \frac{ \sin x(2 { \sin}^{2} x)}{ {x}^{3} }  \\ \\   \to \:  \tt \: \lim_{x \to 0}  \frac{ 2  { \sin}^{3}x }{ {x}^{3} }  \\ \:  \\   \to \:  \tt \: \lim_{x \to 0}  2 {  \bigg(\frac{ \sin x}{x}  \bigg)}^{3}  \\  \:  \\   \to  \to \:  \tt \: \lim_{x \to 0} 2 \\ \:  \\ \bf taking \: limit \:  \\  \\  \to \: 2 \\  \\  \to \boxed{ \tt \: \lim_{x \to 0}  \frac{ \sin x(1 -  \cos2x)}{ {x}^{3} }   = 2}

Another method:-

We have,

 \to \:  \tt \: \lim_{x \to 0}  \frac{ \sin x(1 -  \cos2x)}{ {x}^{3} }  \\ \:  \\ \sf we \: know \: that \:  \\  \\  \to \boxed{ \lim \tt  \frac{1 -  \cos h}{ {h}^{2} }  =  \frac{1}{2} } \\  \\   \:  \to \:  \tt \: \lim_{x \to 0}   \:  \frac{4}{4} \:  \frac{ \sin x(1 -  \cos2x)}{ x.{x}^{2} }  \\ \:  \\  \to \:  \tt \: \lim_{x \to 0}  4 \: \frac{ \sin x(1 -  \cos2x)}{ 4{x}^{2} .x}  \\ \:  \\  \to \:  \tt \: \lim_{x \to 0}   \:4 \:  \frac{ \sin x}{ {x} } \times  \frac{1}{2}   \\ \:  \\  \to \:  \tt \: \lim_{x \to 0}  2 \: \frac{ \sin x}{ {x}}  \\ \:  \\  \to \: 2 \\  \\  \to \boxed{  \tt \: \lim_{x \to 0}  \frac{ \sin x(1 -  \cos2x)}{ {x}^{3} }   = 2}

Similar questions