Limit Xtends to 0
(1+sinx)^⅓-(1-sinx)^⅓/x
Answers
Answered by
1
Answer:
Step-by-step explanation:
Limit Xtends to 0 ((1+sinx)^⅓-(1-sinx)^⅓)/x = 0/0
use L'Hôpital's rule
Limit Xtends to 0 ((1+sinx)^⅓-(1-sinx)^⅓)/x
= Limit Xtends to 0 ( d(1+sinx)^(1/3))/dx - d(1-sinx)^(1/3))/dx ) / (dx/dx
= Limit Xtends to 0 ( (1/3)(1+sinx)^(-2/3)cosx-(1/3)(1-sinx)^(-2/3)(-cosx) )
= (1/3)(1+0)^(-2/3)(1)-(1/3)(1-0)^(-2/3)(-1)
= (1/3)+(1/3)
=2/3
Similar questions