Limits and Derivatives. Differentiate Sin x using the first principle.
Answers
Answered by
68
Hey!
_____
_____________________________________________________________
★Limits and Derivatives ★
_____________________________________________________________
→ Differentiate Sin x using the first principle.
=> Given , f ( x ) = sin x
Then , f' ( x ) = Lim. h → 0 { f ( x + h ) - f ( x ) / h }
=> Lim.h→0 sin ( x + h ) - sin x / h
_______________________
★ we can use the identity
❗ Sin x - Sin y = 2 Cos( x + y /2) Sin( x - y/2 ) ❗
=> Lim h →0 2 Cos (x + x + h /2) Sin (x + h - x /2)
=> Lim.h→0 2 Cos ( 2x + h/2) Sin( h/2)
=> Lim.h→0 cos ( x + h/2 ) Lim. h→0 Sin (h/2)/ h/2
_______________________
★Now , Lim.h→0 ( Sin x /x ) => 1
•°• Lim.h → 0 Cos ( x + h/2 )
➡Put h = 0 , we Will get,
=> d / dx ( sin x ) = cos x ✔
➖•The derivative of sin x w.r.t x is => cos x ✔
_____________________________________________________________
_____
_____________________________________________________________
★Limits and Derivatives ★
_____________________________________________________________
→ Differentiate Sin x using the first principle.
=> Given , f ( x ) = sin x
Then , f' ( x ) = Lim. h → 0 { f ( x + h ) - f ( x ) / h }
=> Lim.h→0 sin ( x + h ) - sin x / h
_______________________
★ we can use the identity
❗ Sin x - Sin y = 2 Cos( x + y /2) Sin( x - y/2 ) ❗
=> Lim h →0 2 Cos (x + x + h /2) Sin (x + h - x /2)
=> Lim.h→0 2 Cos ( 2x + h/2) Sin( h/2)
=> Lim.h→0 cos ( x + h/2 ) Lim. h→0 Sin (h/2)/ h/2
_______________________
★Now , Lim.h→0 ( Sin x /x ) => 1
•°• Lim.h → 0 Cos ( x + h/2 )
➡Put h = 0 , we Will get,
=> d / dx ( sin x ) = cos x ✔
➖•The derivative of sin x w.r.t x is => cos x ✔
_____________________________________________________________
BrainlyVirat:
Inbox me dii..
Answered by
7
plz refer to the attachment for answer
here
thanks
here
thanks
Attachments:
Similar questions