Math, asked by Anonymous, 1 year ago

Limits chapter!!


I need complete answer!!


No spamming!!

Attachments:

Answers

Answered by Shubhendu8898
4
Given,

\lim_{x \to 0}\frac{a^{\tan x}-a^{\sin x}}{\tan x -\sin x}\\\;\\=\lim_{x \to 0}\frac {a^{\sin x}(a^{(\tan x-\sin x)}-1)}{\tan x-\sin x}\\\;\\=\lim_{x \to 0}\frac {a^{\sin x}[1+(\tan x-\sin x)\log_ea+\frac{(\tan x-\sin x)^{2}(log_ea)^{2}}{2!}.............-1]}{\tan x-\sin x}\\\;\\=\lim_{x \to 0}a^{\sin x}[\log_ea+\frac{(\tan x-\sin x)(log_ea)^{2}}{2!}.............]\\\;\\=a^{\sin 0}(\log_ea+ 0+0)\\\;\\=\log_ea
Attachments:

Anonymous: Bhaiya I need both the questions solution.
Shubhendu8898: ok ! will add a attachment soon
Anonymous: Thank you Bhaiya :-)
Shubhendu8898: ans. is D
Shubhendu8898: check attachments
Anonymous: Correct answer Bhaiya. Thank you :-)
Similar questions