limits question
100 points {please answer}
don't spam
Attachments:
Answers
Answered by
1
Answer:
Step-by-step explanation:
lim x tends to 0 {1^1/sin^2(x)+..........+n^1/sin2^x}
lim x tends to 0{1^(sin^-1(x))^2=..........+n^(sin^-(x))^2}
substitute x=0 we get
1^(sin^-(0))^2+......+n^(sin^-1(0))^2}
we know sin inverse 0 is 0
and 0 ka square is 0
so we get expression as 1^0+2^0+.......+n^0(upto n)
1+1+1+......+1(n numbers)
n
Answered by
6
Answer:
Option (3), n(n + 1)/2 is correct
Step-by-step explanation:
We have to find the value of
Let,
Then
Taking limit on both sides as , we get
This gives
,
which is the required limiting value.
Similar questions