Math, asked by aaanswer, 19 days ago

Limits
What is the maximum value of f(1) for all polynomials f(x) that follows the conditions?
There exists a natural number n such that -\text{$\displaystyle\lim_{x\to\infty}\dfrac{f(x)-4x^{3}+3x^{2}}{x^{n+1}+1}=6$}
and -
\text{$\displaystyle\lim_{x\to0}\dfrac{f(x)}{x^{n}}=4.$}

Answers

Answered by user0888
29

\Huge\text{14}

\Large\text{\underline{\underline{Crucial concepts}}}

The limit of \text{$\displaystyle\lim_{x\to\infty}\dfrac{f(x)}{g(x)}$} contains three cases.

\text{$\cdots\longrightarrow$Degree of $f(x)$ $>$ Degree of $g(x)\iff\displaystyle\lim_{x\to\infty}\dfrac{f(x)}{g(x)}=\pm\infty.$}

\text{$\cdots\longrightarrow$Degree of $f(x)$ = Degree of $g(x)\iff\displaystyle\lim_{x\to\infty}\dfrac{f(x)}{g(x)}=\dfrac{\text{Leading coefficient of $f(x)$}}{\text{Leading coefficient of $g(x)$}}$}

\text{$\cdots\longrightarrow$Degree of $f(x)$ $<$ Degree of $g(x)\iff\displaystyle\lim_{x\to\infty}\dfrac{f(x)}{g(x)}=0.$}

For -

\text{$\cdots\longrightarrow\displaystyle\lim_{x\to a}\dfrac{f(x)}{g(x)}=\alpha$}

while -

\text{$\cdots\longrightarrow g(x)\to0$}

it results in, -

\text{$\cdots\longrightarrow f(x)\to0.$}

\Large\text{\underline{\underline{Explanation}}}

\text{\underline{Step 1. Check the given conditions}}

We know that -

\text{$\cdots\longrightarrow\displaystyle\lim_{x\to\infty}\dfrac{f(x)-4x^{3}+3x^{2}}{x^{n+1}+1}=6.$}

So, we know it is the condition of the equal degrees of the numerator and denominator. And we even know the leading coefficient is 6.

We know that -

\text{$\cdots\longrightarrow\displaystyle\lim_{x\to0}\dfrac{f(x)}{x^{n}}=4.$}

As x\to0, the denominator tends to 0 and there exists a limiting value. So the numerator tends to 0 as well.

\text{\underline{Step 2 - (A).}}

First, let us consider n=1.

The leading coefficient is 6 and the degree is n+1=2. We even know that f(x) consists of quadratic and linear terms because, -

\text{$\cdots\longrightarrow\displaystyle\lim_{x\to0}\dfrac{f(x)}{x}=4.$}

Let us consider -

\text{$\cdots\longrightarrow f(x)-4x^{3}+3x^{2}=6x^{2}+ax.$}

Then, -

\text{$\cdots\longrightarrow f(x)=4x^{3}+3x^{2}+ax.$}

So, -

\text{$\cdots\longrightarrow\displaystyle\lim_{x\to0}\dfrac{f(x)}{x}=4$}

\text{$\cdots\longrightarrow\displaystyle\lim_{x\to0}\dfrac{4x^{3}-3x^{2}+ax}{x}=4$}

\text{$\cdots\longrightarrow\displaystyle\lim_{x\to0}(4x^{2}-3x+a)=4$}

\text{$\cdots\longrightarrow\underline{a=4.}$}

\text{$\therefore f(x)=4x^{3}+3x^{2}+4x\iff f(1)=4+3+4=11.$}

\text{\underline{Step 2 - (B).}}

Now, let us consider n=2.

The leading coefficient is 6, and the degree is n+1=3. We even know that f(x) consists of cubic and quadratic terms because, -

\text{$\cdots\longrightarrow\displaystyle\lim_{x\to0}\dfrac{f(x)}{x^{2}}=4.$}

Let us consider, -

\text{$\cdots\longrightarrow f(x)=10x^{3}+bx^{2}.$}

Since, -

\text{$\cdots\longrightarrow\displaystyle\lim_{x\to0}\dfrac{10x^{3}+bx^{2}}{x^{2}}=4$}

it results in, -

\text{$\cdots\longrightarrow\underline{b=4.}$}

\text{$\therefore f(x)=10x^{3}+4x^{2}\iff f(1)=10+4=14.$}

\text{\underline{Step 2 - (C).}}

Lastly, let us consider n\geq3.

Let us consider -

\text{$\cdots\longrightarrow f(x)=6x^{n+1}+cx^{n}.$}

Since, -

\text{$\cdots\longrightarrow\displaystyle\lim_{x\to0}\dfrac{6x^{n+1}+cx^{n}}{x^{n}}=4$}

it results in, -

\text{$\cdots\longrightarrow\underline{c=4.}$}

\text{$\therefore f(x)=6x^{n+1}+4x^{n}\iff f(1)=6+4=10.$}

\text{\underline{Step 3. Conclusion part}}

Hence, the maximum value of f(1) is 14.

Similar questions