Limx-0 1-cos4x/1-cos6x please give me full answer
Answers
Answered by
38
do as shown..............
Attachments:
rakh1234:
How come 4x² nd 9x²
Answered by
16
Limit [ (1 - cos 4x) / (1 - cos 6x) ] = ?
x→0
Solution:
Limit [ (1 - cos 4x) / (1 - cos 6x) ] = Limit [ (2 sin² 2x) / (2 sin² 3x) ]
x→0 x→0
Limit [ (1 - cos 4x) / (1 - cos 6x) ] = Limit (sin² 2x / sin² 3x)
x→0 x→0
Limit [ (1 - cos 4x) / (1 - cos 6x) ] = Limit ( sin 2x . sin 2x / sin 3x . sin 3x )
x→0 x→0
Limit [ (1 - cos 4x) / (1 - cos 6x) ] = Limit [ (sin 2x/2x . sin 2x/2x). (2x)² /
x→0 x→0 (sin 3x/3x . sin 3x/3x). (3x)² ]
Limit [ (1 - cos 4x) / (1 - cos 6x) ] = [ Limit sin 2x/2x ] . [ Limit sin 2x/2x ] /
x→0 x→0 x→0
[ Limit sin 3x/3x ] . [ Limit sin 3x/3x ] x 4x²/9x²
x→0 x→0
Limit [ (1 - cos 4x) / (1 - cos 6x) ] = (1 . 1 / 1 . 1 ) x (4 / 9)
x→0
[∵ Limit sin Ф/Ф = 1]
x→0
Limit [ (1 - cos 4x) / (1 - cos 6x) ] = 4 / 9
x→0
which is the required answer.
Hope it will help you. Thanks.
x→0
Solution:
Limit [ (1 - cos 4x) / (1 - cos 6x) ] = Limit [ (2 sin² 2x) / (2 sin² 3x) ]
x→0 x→0
Limit [ (1 - cos 4x) / (1 - cos 6x) ] = Limit (sin² 2x / sin² 3x)
x→0 x→0
Limit [ (1 - cos 4x) / (1 - cos 6x) ] = Limit ( sin 2x . sin 2x / sin 3x . sin 3x )
x→0 x→0
Limit [ (1 - cos 4x) / (1 - cos 6x) ] = Limit [ (sin 2x/2x . sin 2x/2x). (2x)² /
x→0 x→0 (sin 3x/3x . sin 3x/3x). (3x)² ]
Limit [ (1 - cos 4x) / (1 - cos 6x) ] = [ Limit sin 2x/2x ] . [ Limit sin 2x/2x ] /
x→0 x→0 x→0
[ Limit sin 3x/3x ] . [ Limit sin 3x/3x ] x 4x²/9x²
x→0 x→0
Limit [ (1 - cos 4x) / (1 - cos 6x) ] = (1 . 1 / 1 . 1 ) x (4 / 9)
x→0
[∵ Limit sin Ф/Ф = 1]
x→0
Limit [ (1 - cos 4x) / (1 - cos 6x) ] = 4 / 9
x→0
which is the required answer.
Hope it will help you. Thanks.
Similar questions