Line l is parallel to line e in the figure below. Parallel lines e and l are crossed by lines m and n to form 2 triangles. At the intersection of parallel line e with line n is angle q, and with line m is angle 3. Angle 2 is the third angle. At the intersection of parallel line l and m is 6, at line n is 4. The third angle is 5. Which statements about the figure are true? Check all that apply.
Answers
Answered by
0
Answer:
Given: Two parallel lines AB and CD and a transversal EF intersect them at G and H respectively. GM, HM, GL and HL are the bisectors of the two pairs of interior angles.
To Prove: GMHL is a rectangle.
Proof:
∵AB∥CD
∴∠AGH=∠DHG (Alternate interior angles)
⇒
2
1
∠AGH=
2
1
∠DHG
⇒∠1=∠2
(GM & HL are bisectors of ∠AGH and ∠DHG respectively)
⇒GM∥HL
(∠1 and ∠2 from a pair of alternate interior angles and are equal)
Similarly, GL∥MH
So, GMHL is a parallelogram.
∵AB∥CD
∴∠BG
Answered by
2
Answer:
ur mum
Step-by-step explanation:
the answer is ur mum because 34.5+34.5=69
Similar questions