Physics, asked by pappukr984, 2 months ago

linear momentum of body is increased by 50%, find % change in E.​

Attachments:

Answers

Answered by Anonymous
12

Topic :- Work , Energy and Power

\maltese \: \underline{\underline{\textsf{\textbf{AnsWer :}}}}\:\maltese

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3mm}\put(1,1){\line(1,0){6.8}}\end{picture}

\bullet \:  \sf\footnotesize P_{(initial)} = P \\

\bullet \:  \sf\footnotesize P_{(final)} = P + 50\%

\bullet \:  \sf\footnotesize P_{(final)} = P +  \dfrac{50}{100} P

\bullet \:  \sf\footnotesize P_{(final)} = P +  \dfrac{5}{10} P

\bullet \:  \sf\footnotesize P_{(final)} = 10 \times P +  \dfrac{5P}{10}

\bullet \:  \sf\footnotesize P_{(final)} =  \dfrac{10P + 5P}{10}

\bullet \:  \sf\footnotesize P_{(final)} =  \dfrac{15P}{10}

\bullet \:  \sf\footnotesize P_{(final)} =  \dfrac{15P}{10}

\bullet \:  \sf\footnotesize P_{(final)} =  \dfrac{15P \div 5}{10 \div 5}

\bullet \:  \sf\footnotesize P_{(final)} =  \dfrac{3P }{2}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3mm}\put(1,1){\line(1,0){6.8}}\end{picture}

Relation between Linear momentum (P) and Kinetic energy (K.E) is given as :

\longrightarrow\:\sf P = \sqrt{2mk} \\

\longrightarrow\:\sf P^{2}  = 2mk \\

\longrightarrow\:\sf k =  \dfrac{P^{2}}{ 2m}...(i)

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3mm}\put(1,1){\line(1,0){6.8}}\end{picture}

\longrightarrow\:\sf  \dfrac{k_{(final)}  -  k_{(initial)}}{k_{(initial)} } \times 100 \\

From equation (i) we can write Final and initial Kinetic energy as :

\longrightarrow\:\sf  \dfrac{ \dfrac{P_{(final)} ^{2} }{2m}  -   \dfrac{P_{(initial)} ^{2} }{2m} }{ \dfrac{P_{(initial)} ^{2}}{2m}}\times 100

\longrightarrow\:\sf    \dfrac{P_{(final)} ^{2}-   P_{(initial)} ^{2}}{P_{(initial) }^{2} }\times 100 \\

\longrightarrow\:\sf    \dfrac{ \bigg( \dfrac{3P}{2} \bigg) ^{2} -   P^{2}}{P^{2} }\times 100 \\

\longrightarrow\:\sf    \dfrac{  \dfrac{9P}{4}-   P^{2}}{P^{2} }\times 100 \\

\longrightarrow\:\sf    \dfrac{ 5}{4}\times 100

\longrightarrow\:\sf    \dfrac{ 500}{4}

\longrightarrow\: \underline{ \underline{\sf  125\%}}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3mm}\put(1,1){\line(1,0){6.8}}\end{picture}

Similar questions