Math, asked by laibarasul78, 10 months ago

ln(1/e^x)=lne^3x+4
Solve for the value of x.

Answers

Answered by BendingReality
8

Answer:

\displaystyle \red{{x=-1}}

Step-by-step explanation:

Given :

\displaystyle{\ln\left(\frac{1}{e^x}\right) =\ln e^{3x+4}}

On comparing both side we get :

\displaystyle{\left(\frac{1}{e^x}\right) = e^{3x+4}}\\\\\\\displaystyle{\left(\frac{1}{e^x}\right) = e^{3x}.e^4}\\\\\\\displaystyle{\left(\frac{1}{e^x}\right) = (e^{x})^3.e^4}\\\\\\\display \text{Let $e^x$} = y}\\\\\\\displaystyle{\left(\frac{1}{y}\right) = y^{3}.e^4}\\\\\\\displaystyle{\left(\frac{1}{e^4}\right) = y^4}

\displaystyle{\left(\frac{1}{e}\right)^4 = y^4}\\\\\\\displaystyle{y =\frac{1}{e}}\\\\\\\displaystyle{e^x=\frac{1}{e}}\\\\\\\displaystyle{e^x=e^{-1}}\\\\\\\displaystyle{\rightarrow x=-1}

Hence we get answer.

Similar questions