Math, asked by sujal7821, 10 months ago

log (10 x+5) -log(x-4)=2​

Answers

Answered by AbhijithPrakash
7

Answer:

\log _{10}\left(10x+5\right)-\log _{10}\left(x-4\right)=2\quad :\quad x=\dfrac{9}{2}\quad \left(\mathrm{Decimal}:\quad x=4.5\right)

Step-by-step explanation:

\log _{10}\left(10x+5\right)-\log _{10}\left(x-4\right)=2

\gray{\mathrm{Add\:}\log _{10}\left(x-4\right)\mathrm{\:to\:both\:sides}}

\log _{10}\left(10x+5\right)-\log _{10}\left(x-4\right)+\log _{10}\left(x-4\right)=2+\log _{10}\left(x-4\right)

\gray{\mathrm{Simplify}}

\log _{10}\left(10x+5\right)=2+\log _{10}\left(x-4\right)

\gray{\mathrm{Apply\:log\:rule}:\quad \:a=\log _b\left(b^a\right)}

\gray{2=\log _{10}\left(10^2\right)=\log _{10}\left(100\right)}

\log _{10}\left(10x+5\right)=\log _{10}\left(100\right)+\log _{10}\left(x-4\right)

\gray{\mathrm{Apply\:log\:rule}:\quad \log _c\left(a\right)+\log _c\left(b\right)=\log _c\left(ab\right)}

\gray{\log _{10}\left(100\right)+\log _{10}\left(x-4\right)=\log _{10}\left(100\left(x-4\right)\right)}

\log _{10}\left(10x+5\right)=\log _{10}\left(100\left(x-4\right)\right)

\gray{\mathrm{Apply\:log\:rule:\:\:If}\:\log _b\left(f\left(x\right)\right)=\log _b\left(g\left(x\right)\right)\:\mathrm{then}\:f\left(x\right)=g\left(x\right)}

10x+5=100\left(x-4\right)

\gray{\mathrm{Solve\:}\:10x+5=100\left(x-4\right):\quad x=\dfrac{9}{2}}

x=\dfrac{9}{2}

\gray{\mathrm{The\:solution\:is}}

x=\dfrac{9}{2}

Attachments:
Similar questions