Math, asked by pooniaparmod7430, 1 year ago

log 2 ∫ xe⁻ˣ dx ,Evaluate it. 0

Answers

Answered by tarun8639
0

I hope it may be help you

please mark as brainliest

Attachments:
Answered by ujalasingh385
1

Answer:

-log2[xe^{-x}\ +\ e^{-x}]

Step-by-step explanation:

In this question,

We have been asked to evaluate

log2\ \int{xe^{-x}\ dx}

Using Integration by parts,

\int{uv\ dx}\ =\ u\int{vdx}\ -\ \int{[\frac{du}{dx}\int{vdx}]dx}

Here u = x

         v = e^{-x}

Putting the values we get,

So, \int{xe^{-x}dx}\ =\ x\int{e^{-x}dx}\ -\ \int{[\frac{d}{dx}(x)\int{e^{-x}dx}]dx}

\int{xe^{-x}dx}\ =\ x(-e^{-x})\ -\ \int{1(-e^{-x})dx}    {\int{e^{-x}dx}\ =\ -e^{-x}}

\int{xe^{-x}dx}\ =\ -xe^{-x}\ +\ \int{e^{-x}dx}

\int{xe^{-x}dx}\ =\ -xe^{-x}\ -\ e^{-x}          {\int{e^{-x}dx}\ =\ -e^{-x}}

Therefore, log2\int{xe^{-x}dx}\ =\ -log2[xe^{-x}\ +\ e^{-x}]

Similar questions