Log√27- log√8/log3- log 2
Answers
Step-by-step explanation:
Consider the LHS as:
:\frac{\log {\sqrt27} + \log 8 + :\log \sqrt{1000}}{\log{120}}
= :\frac{\log {27^\frac{1}{2}} + \log 2^3 + \log {1000^\frac{1}{2}}}{\log{(2 \times 2 \times 2 \times 3 \times 5)}}
Using the laws of logarithmic which states, \log m^n = n \log m
= \frac{\frac{1}{2} \log(3^3) + \log(2^3) + \frac{1}{2} \log(10^3)}{\log(2^3 \times 3 \times 5)}
=\frac{\frac{3}{2} \log3 + 3 \log(2) + \frac{3}{2} \log(10)}{\log(2^3)+\log3+ \log 5}
= \frac{\frac{3}{2} \log3 + 3 \log(2) + \frac{3}{2} \log(2 \times 5)}{3 \log2+\log3+ \log 5}
= \frac{\frac{3}{2} \log3 + 3 \log2 + \frac{3}{2} (\log2 + \log 5)}{3 \log2+\log3+ \log 5}
= \frac{\frac{3}{2} \log3 + 3 \log2 + \frac{3}{2} \log2 +\frac{3}{2} \log 5}{3 \log2+\log3+ \log 5}
= \frac{\frac{3}{2} \log3 + \frac{9}{2} \log2 +\frac{3}{2} \log 5}{3 \log2+\log3+ \log 5}
= \frac{3}{2}\frac{( \log3 + 3 \log2 + \log 5)}{3 \log2+\log3+ \log 5}
= \frac{3}{2}
=RHS
Hence, proved.
Given : log√27- log√8/log3- log 2
To find : Value
Solution:
(log√27- log√8 )/ (log3- log 2)
√27 = √3³ =
√8 = √2³ =
now using log aᵇ = b log a
log √27 = (3/2) log 3
log √8 = (3/2) log 2
(log√27- log√8 )/ (log3- log 2)
= ((3/2) log 3 - (3/2) log 2 ) / (log3- log 2)
= (3/2) (log3- log 2) / (log3- log 2)
= 3/2
log√27- log√8/log3- log 2 = 3/2
Learn More:
if x=log [ab]; y=log [a+b] ; z= log
https://brainly.in/question/13214148
loga, logb and logc are the terms of an A.P.Write the relation ...
https://brainly.in/question/17096553