Math, asked by malobiswambhar, 2 months ago

log(3+x) -log(3- x)
(i) lim
x 0
X​

Answers

Answered by llXxarmygirlxXll
1

Answer:

The limit equation is given by:

\lim_{x \to 0} \left( \frac{sin(2x)}{x^3} + a + \frac{b}{x^2} \right) = 0lim

x→0

( x 3sin(2x)

+a+ x 2b)=0

Separating the constant aa from the limit, we have:

\lim_{x \to 0} \left( \frac{\sin (2x)}{x^3} + \frac{b}{x^2} \right) + a = 0lim

x→0

( x 3

sin(2x)

+ x 2b)+a=0

\Rightarrow \lim_{x \to 0} \left( \frac{ \sin (2x) + bx }{x^3} \right) + a = 0⇒lim

x→0

( x 3

sin(2x)+bx)+a=0

After substituting the limit value x = 0x=0 into the limit function, we can see that we have \frac{0}{0} 00

form is exist. So we will apply L'Hospital's Rule to this limit function.

Now:

We know that this rule states that if such indeterminate form \frac{0}{0} 00

exists then we will take the derivatives of the numerator and denominator and substitute the limit value. This process will apply again and again until we get a finite value.

\\

Applying L'Hospital's Rule to the limit function, we have:

\lim_{x \to 0} \left( \frac{2 \cos (2x) + b }{3x^2} \right) + a = 0lim

x→0

( 3x22cos(2x)+b )+a=0

Substituting x = 0x=0 into the limit function, we have:

\Rightarrow \left( \frac{2 + b}{3(0^2)} \right) + a \hspace{1 cm} \left[ \because \cos (0) = 1 \right]⇒(

3(0 2)2+b )+a[∵cos(0)=1

After substituting x = 0x=0 into the limit function, we get \infty∞ . But this result is not possible because the right hand side of the limit equation is zero. So, we have to find a value of bb so that b + 2 = 0 \, or \, b = - 2b+2=0orb=−2

\\

Now:

Substituting b = - 2b=−2 into the limit function we have:

\lim_{x \to 0} \left( \frac{2 \cos(2x) - 2}{3x^2} \right) + a = 0lim

x→0

( 3x 2

2cos(2x)−2)+a=0

\Rightarrow \frac{2}{3} \lim_{x \to 0} \left( \frac{\cos (2x) - 1}{x^2} \right) + a = 0⇒ 32

lim

x→0 ( x 2

cos(2x)−1 )+a=0

\Rightarrow \frac{2}{3} \lim_{x \to 0} \left( \frac{ - 2 \sin (2x) - 0}{2x} \right) + a = 0⇒ 32

lim

x→0

( 2x−2sin(2x)−0

)+a=0 \hspace{1 cm} [ \because \frac{0}{0}∵ 00

form, so we used L'Hospital's Rule ]

\Rightarrow - \frac{2}{3} \lim_{x \to 0} \left( \frac{ \sin (2x)}{x} \right) + a = 0⇒−32

lim

x→0

( xsin(2x) )+a=0

\Rightarrow - \frac{2}{3} \lim_{x \to 0} \left( \frac{2 \cos(2x)}{1} \right) + a = 0 \hspace{1 cm}⇒− 32 lim

x→0 ( 1 )

2cos(2x) )+a=0 [ \because \frac{0}{0}∵ 00

form, so we used L'Hospital's Rule ]

\Rightarrow - \frac{2}{3} \left( 2 \cos(0) \right) + a = 0 \hspace{1 cm}⇒− 32

(2cos(0))+a=0 [ Substitute x = 0x=0 into the limit function ]

\Rightarrow - \frac{4}{3} + a = 0 \hspace{1 cm} \left[ \because \cos(0) = 1 \right]⇒− 34+a=0[∵cos(0)=1]

\Rightarrow a = \frac{4}{3}⇒a= 34

Hence:

The values of a\, \, and \,\, baandb are \frac{4}{3} \, and \, -2

34and−2 respectively.

Similar questions