Math, asked by lamisha1514778, 19 days ago

log (3x+2) base 10 +log(x-1) base 10 =1

Answers

Answered by anindyaadhikari13
13

Solution:

Given Equation:

 \rm \longrightarrow log_{10}(3x + 2) +  log_{10}(x - 1)  = 1

 \rm \longrightarrow log_{10}(3x + 2)(x - 1)  = 1

 \rm \longrightarrow log_{10}(3 {x}^{2}  - 3x + 2x - 2) = 1

 \rm \longrightarrow log_{10}(3 {x}^{2}  -x - 2) = 1

 \rm \longrightarrow 3 {x}^{2}  -x - 2 =  {10}^{1}

 \rm \longrightarrow 3 {x}^{2}  -x - 12 = 0

 \rm \longrightarrow x =  \dfrac{1 \pm \sqrt{1 + 4 \times 3 \times 12} }{6}

 \rm \longrightarrow x =  \dfrac{1 \pm \sqrt{144} }{6}

But x > 0 and therefore:

 \rm \longrightarrow x =  \dfrac{1 + \sqrt{144} }{6}

★ Which is our required answer.

Answer:

 \rm \hookrightarrow x =  \dfrac{1 + \sqrt{144} }{6}

Basic Concepts Used:

 \rm1. \:  \:  log(x) +  log(y)  + .. =  log(xy...)

 \rm2. \:  \: log_{a}(x) = y \: or \: x  = {a}^{y}

Answered by jaswasri2006
2

Refer The Given Attachment.

Attachments:
Similar questions