Math, asked by rishireddy119, 1 year ago

log 8 + log 25 + 2 log 3 - log 18​

Answers

Answered by charliejaguars2002
19

Answer:

\Large\boxed{2}

Step-by-step explanation:

To solve this problem, first you have to used log formula.

Given:

log 8+ log 25+2 log 3- log 18

Solutions:

Used log rules.

\Large\boxed{\textnormal{LOG RULES FORMULA}}

\displaystyle \log _c\left(a\right)+\log _c\left(b\right)=\log _c\left(ab\right)

\displaystyle\log _{10}\left(8\right)+\log _{10}\left(25\right)=\log _{10}\left(8\cdot \:25\right)

\displaystyle \log _{10}\left(8\cdot \:25\right)+2\log _{10}\left(3\right)-\log _{10}\left(18\right)

Multiply the numbers from left to right.

\displaystyle 8*25=200

\displaystyle \log _{10}\left(200\right)+2\log _{10}\left(3\right)-\log _{10}\left(18\right)

\Large\boxed{{a\log _c\left(b\right)=\log _c\left(b^a\right)}}

\displaystyle 2\log _{10}\left(3\right)=\log _{10}\left(3^2\right)

\displaystyle \log _{10}(200)+\log _{10}\(3^2)-\log _{10}(18)

\displaystyle \log _{10}\left(200\right)+\log _{10}\left(3^2\right)=\log _{10}\left(3^2\cdot \:200\right)

\displaystyle \log _{10}\left(3^2\cdot \:200\right)-\log _{10}\left(18\right)

Solve.

Multiply.

\displaystyle 3^2*200=1800

\displaystyle \log _{10}\left(1800\right)-\log _{10}\left(18\right)

\displaystyle \log _{10}\left(\frac{1800}{18}\right)

Divide.

\displaystyle 1800\div18=100

\log _{10}\left(100\right)

\displaystyle 10^2=10*10=100

\displaystyle \log _{10}\left(10^2\right)

\displaystyle \log _{10}\left(10^2\right)=2\log _{10}\left(10\right)

\displaystyle 2\log _{10}\left(10\right)

\displaystyle \log _{10}\left(10\right)=1

Multiply the numbers from left to right.

\displaystyle 2*1=\boxed{2}

Hence, the correct answer is 2.

Answered by dmc007
0

Answer:

Step-by-step explanation:

Similar questions