Log{(a/b)/3}=1/2(log a + log b), then relation between a and b is
Answers
Answered by
0
Good question. I also want to know the answer of this question.
Answered by
3
log { ( a / b ) / 3 } = 1 / 2 ( log a + log b )
log { ( a / b ) × 1 / 3 } = 1 / 2 ( log a + log b )
log { a / ( b × 3 ) } = 1 / 2 { log a + log b )
log { a / 3b } = 1 / 2 log a + 1 / 2 log b
log { a / 3b } = log { a^( ½ ) } + log { b^( ½ ) }
log { a / 3b } = log √a + log √b
log { a / 3b } = log { √a × √b }
log { a / 3b } = log { √( ab ) }
Comparing both sides ,
a / 3b = √( ab )
Square on both sides ,
Therefore, relation between a and b is : –
a = 9b³
log { ( a / b ) × 1 / 3 } = 1 / 2 ( log a + log b )
log { a / ( b × 3 ) } = 1 / 2 { log a + log b )
log { a / 3b } = 1 / 2 log a + 1 / 2 log b
log { a / 3b } = log { a^( ½ ) } + log { b^( ½ ) }
log { a / 3b } = log √a + log √b
log { a / 3b } = log { √a × √b }
log { a / 3b } = log { √( ab ) }
Comparing both sides ,
a / 3b = √( ab )
Square on both sides ,
Therefore, relation between a and b is : –
a = 9b³
Similar questions