Log(a-b)=loga.-logb then prove a=b×b/b-1
Answers
Answered by
4
it should be loga - logb, not loga(-logb),
loga - logb = loga + (-logb)= loga+ (log(b ^ -1)) = loga + (log (1/b))
applying property loga +logb = log(ab)
log(a-b) = log (axb^ -1) = log(a/b)
then comparing,
a-b = a/b
a(1-1/b) = b
then we get, a = b^2/b-1
loga - logb = loga + (-logb)= loga+ (log(b ^ -1)) = loga + (log (1/b))
applying property loga +logb = log(ab)
log(a-b) = log (axb^ -1) = log(a/b)
then comparing,
a-b = a/b
a(1-1/b) = b
then we get, a = b^2/b-1
Similar questions