Math, asked by somyadeeb33, 5 months ago

log base 10 2+ 16 log base 10 (16÷15) + 12 log base 10 (25÷24) + 7 log base 10 (81÷80)=?​

Answers

Answered by patelrimjhim36
0

Answer:

x=a(cosθ+log(tan(θ2)) and y=asinθ then find the value of d2ydx2 at θ=π4. camera. Ask your ... If `x=theta-sinthetaandy=1-costheta,"find"

Answered by anindyaadhikari13
9

Required Answer:-

Given to evaluate:

 \rm \mapsto log_{10}(2)  + 16 log_{10} \bigg( \dfrac{16}{15}  \bigg)  + 12 log_{10} \bigg( \dfrac{25}{24}  \bigg)  + 7 log_{10} \bigg( \dfrac{81}{80}  \bigg)

Solution:

 \rm log_{10}(2)  + 16 log_{10} \bigg( \dfrac{16}{15}  \bigg)  + 12 log_{10} \bigg( \dfrac{25}{24}  \bigg)  + 7 log_{10} \bigg( \dfrac{81}{80}  \bigg)

 \rm =  log_{10}(2)  + log_{10} \bigg( \dfrac{ {16}^{16} }{ {15}^{16} }  \bigg)  +  log_{10} \bigg( \dfrac{ {25}^{12} }{ {24}^{12} }  \bigg)  + log_{10} \bigg( \dfrac{ {81}^{7} }{ {80}^{7} }  \bigg)

 \rm =  log_{10}(2)  + log_{10} \bigg( \dfrac{ {2}^{4 \times 16} }{ {(3 \times 5)}^{16} }  \bigg)  +  log_{10} \bigg( \dfrac{ {5}^{12 \times 2} }{ {(3 \times  {2}^{3}) }^{12} }  \bigg)  + log_{10} \bigg( \dfrac{ {3}^{4 \times 7} }{ {( {2}^{4} \times 5)}^{7} }  \bigg)

 \rm =  log_{10}(2)  + log_{10} \bigg( \dfrac{ {2}^{64} }{ {3}^{16}  \times  5^{16} }  \bigg)  +  log_{10} \bigg( \dfrac{ {5}^{24} }{  {3}^{12}  \times  {2}^{36}}  \bigg)  + log_{10} \bigg( \dfrac{ {3}^{28} }{{2}^{28} \times 5^{7}} \bigg)

 \rm =  log_{10} \bigg( \dfrac{ {2}^{64} \times 2 }{ {3}^{16}  \times  5^{16} }  \times \dfrac{ {5}^{24} }{  {3}^{12}  \times  {2}^{36}} \times \dfrac{ {3}^{28} }{{2}^{28} \times 5^{7}} \bigg)

 \rm =  log_{10} \bigg( \dfrac{ {2}^{65} }{ {3}^{28}  \times  5^{23} }  \times \dfrac{ {5}^{24} }{ {2}^{64}} \times  {3}^{28} \bigg)

 \rm =  log_{10} \bigg(  {2}^{65 - 64}  \times \ {5}^{24 - 23}\bigg)

 \rm =  log_{10} ( 2\times 5)

 \rm =  log_{10}(10 )

 \rm = 1

Hence, the required answer is 1

Similar questions