log base 16 of 32 - log base 25 of 125 + log base 9 of 27
Answers
Answered by
11
Using base change relation,
Solving this furthur,
Answered by
0
log
16
32−log
25
125+log
9
27
Using base change relation,
\frac{ log_{2}32 }{ log_{2}16 } - \frac{ log_{5}125 }{ log_{5}25 } + \frac{ log_{3}9 }{ log_{3}27 }
log
2
16
log
2
32
−
log
5
25
log
5
125
+
log
3
27
log
3
9
Solving this furthur,
\begin{lgathered}\frac{5}{4} - \frac{3}{ 2} + \frac{2}{3} \\ = \frac{15 - 18 + 8}{12} \\ = \frac{5}{12}\end{lgathered}
4
5
−
2
3
+
3
2
=
12
15−18+8
=
12
5
Similar questions