Math, asked by RavenHalloween4311, 11 months ago

log(log x), x>1 dy/dx ज्ञात कीजिए

Answers

Answered by Sharad001
12

Question :-

 \to \sf log \{ log(x) \} \:  \:  ,x > 1 \:   \: find  \: \frac{dy}{dx}  \\

Answer :-

 \to  \boxed{\sf  \frac{dy}{dx}  =   \frac{1}{x log(x) } }  \\

Solution :-

 \sf let \:  \: y =  log \{log(x)  \} \\  \\  \sf \red{mdifferentiate \: with \: respect \: to \: x} \\  \\  \to \sf \frac{dy}{dx}  =  \frac{d}{dx} log \{log(x)  \} \:  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \because \sf \frac{d}{dx}   log(x)  =  \frac{1}{x} } \\  \therefore \:  \\  \to \sf \frac{dy}{dx}  =  \frac{1}{ log(x) }  \frac{d}{dx}  log(x)  \\  \:  \\  \to \sf \frac{dy}{dx}  =  \frac{1}{ log(x) }  \times  \frac{1}{x}  \\  \\   \to  \boxed{\sf  \frac{dy}{dx}  =   \frac{1}{x log(x) } }  \\  \\   \boxed{ \sf \underline{learn \: more \: question}} \\  \\  (1)  \: \sf if \: y =  {e}^{ \sqrt{x} }  \: then \: find \:  \frac{dy}{dx}  \\ (2) \sf if \: y =  {x}^{ \log x}   \: then \: find \:  \frac{dy}{dx}  \\  (3) \sf if \: y =  \sin \{ \cos \{sin x\} \} \: then \: find \:  \frac{dy}{dx}

Answered by amitnrw
2

dy/dx  = 1/xlog( x)    यदि y  = log ( log x)

Step-by-step explanation:

dy/dx ज्ञात कीजिए

y  = log ( log x)

dy/dx  = ( 1/log ( x)  )  ( d ( log x) / dx )

=> dy/dx  = ( 1/log ( x)  ) (1/x)

=> dy/dx  = 1/xlog( x)

और अधिक जानें :

sin(x²+5)"

brainly.in/question/15286193

sin (ax+b) फलन का अवकलन कीजिए

brainly.in/question/15286166

Similar questions