Math, asked by kassandragvndr6101, 11 months ago

y = log(cos e^{x}) dy/dx ज्ञात कीजिए

Answers

Answered by Sharad001
77

★彡 ϙᴜᴇsᴛɪᴏɴ 彡★

 \rm \: if \: y =   \log( \cos  {e}^{x} )  \:  \: then \: find \:  \frac{dy}{dx}  \\

★彡 A n s w e r 彡★

 \to \boxed{ \rm  \frac{dy}{dx}  =  \frac{ -   {e}^{x} \:  \sin  {e}^{x} }{( \cos  {e}^{x} )}  } \:

S o l u t i o n 彡★

We have ,

 \rm \:  \to \: y =   \log( \cos  {e}^{x} )  \: \:  \\  \\ \sf \red{ differentiate \: with \: respect \: to \: x} \\  \\  \to \rm \frac{dy}{dx}  =  \frac{d}{dx} \log( \cos  {e}^{x} )  \: \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \because \rm \frac{d}{dx}   \log(x)  =  \frac{1}{x} } \\  \\  \to \rm \frac{dy}{dx}  =  \frac{1}{( \cos  {e}^{x} )}  \:  \frac{d}{dx}  \cos  {e}^{x}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \rm \because \:  \frac{d}{dx}  \cos x =  -  \sin x} \\  \\  \to \rm \frac{dy}{dx}  =  \frac{ -  \sin  {e}^{x} }{( \cos  {e}^{x} )}  \frac{d}{dx}  \:  {e}^{x}  \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{  \rm \: \because \:  \frac{d}{dx}  {e}^{x}  =  {e}^{x} } \\  \:  \\  \to \boxed{ \rm  \frac{dy}{dx}  =  \frac{ -   {e}^{x} \:  \sin  {e}^{x} }{( \cos  {e}^{x} )}  }

Answered by amitnrw
0

dy/dx  = - eˣ Tan eˣ  यदि y = log ( Cos eˣ)    

Step-by-step explanation:

dy/dx ज्ञात कीजिए

y = log ( Cos eˣ)    

d (log x)/dx  = 1/x

dy/dx  =  ( 1/Cos eˣ )  d  (Cos eˣ)/dx

=> dy/dx  =  ( 1/Cos eˣ )  (-  Sin eˣ)  d (eˣ)/dx

=> dy/dx  =  ( - Sin eˣ  / Cos eˣ ) eˣ

=> dy/dx  = - eˣ Tan eˣ

और अधिक जानें :

sin(x²+5)"

brainly.in/question/15286193

sin (ax+b) फलन का अवकलन कीजिए

brainly.in/question/15286166

Similar questions