Math, asked by irshadali9337, 10 months ago

y = e^{sin^{-1} x} dy/dx ज्ञात कीजिए

Answers

Answered by Sharad001
100

Question :-

 \sf \: if \: y =  {e}^{ ({ \sin}^{ - 1}x) }  \: then \: find \:  \frac{dy}{dx} \\

Answer :-

\to \boxed{ \sf \frac{dy}{dx}  =  \frac{ {e}^{ ({ \sin}^{ - 1}x) }}{ \sqrt{1 -  {x}^{2} } } } \:

Solution :-

We have ,

 \mapsto\sf \: y =  {e}^{ ({ \sin}^{ - 1}x) } \:  \\  \\ \bf \red{ differentiate \: with \: respect \: to \: x} \\  \\  \mapsto \sf \:  \frac{dy}{dx}  =  \frac{d}{dx}   {e}^{ ({ \sin}^{ - 1}x) } \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \because \sf  \frac{d}{dx}  {e}^{x}  =  {e}^{x} } \\  \to \sf \frac{dy}{dx}  =  {e}^{ ({ \sin}^{ - 1}x) } \frac{d}{dx}  ({ \sin}^{ - 1}x)  \\  \\    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{\because \sf\frac{d}{dx}  ({ \sin}^{ - 1}x)  =  \frac{1}{  \sqrt{1 -  {x}^{2} } } } \\  \\  \to \boxed{ \sf \frac{dy}{dx}  =  \frac{ {e}^{ ({ \sin}^{ - 1}x) }}{ \sqrt{1 -  {x}^{2} } } }

Some same questions for practice :-

(1) if y = sin{cos(x)} then find its derivative .

(2) if xy = x²y + yx+ xy³ ,find \: \frac{dy}{dx}

Answered by amitnrw
0

dy/dx   = e^(Sin⁻¹x)  / √(1 - x²) यदि y  =  e^(Sin⁻¹x)

Step-by-step explanation:

y  =  e^(Sin⁻¹x)

dy/dx   =     e^(Sin⁻¹x)  * d (Sin⁻¹x)/dx

d (Sin⁻¹x)/dx  = 1/√(1 - x²)

=> dy/dx   =     e^(Sin⁻¹x)  *   1/√(1 - x²)

=> dy/dx   = e^(Sin⁻¹x)  / √(1 - x²)

और अधिक जानें :

sin(x²+5)"

brainly.in/question/15286193

sin (ax+b) फलन का अवकलन कीजिए

brainly.in/question/15286166

Similar questions